
Flexibility of Content for Organisational
Learning

- A Topic Map Approach -

Stefan Oppl

May 22, 2007

'When I use a word,' Humpty Dumpty said in rather
a scornful tone, 'it means just what I choose it to
mean - neither more nor less.'
'The question is,' said Alice, 'wether you can make
words mean so many different things.'
'The question is,' said Humpty Dumpty, 'which is to
be master - that's all.'

Lewis Carroll in 'Through the Looking Glass' [Car71]

Eidesstattliche Erklärung

Ich erkläre an Eides statt, dass ich die vorliegende Abschlussarbeit selbst-
ständig und ohne fremde Hilfe verfasst, andere als die angegebenen Quellen
und Hilfsmittel nicht benutzt bzw. die wörtlich oder sinngemäß entnommenen
Stellen als solche kenntlich gemacht habe.

DI Stefan Oppl

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Specification of Subgoals . 2
1.3 Structure of this Work . 4

1.3.1 Part 1 - Requirements Gathering 5
1.3.2 Part 2 - Refinement & Representation 5
1.3.3 Part 3 - System Design & Implementation 6
1.3.4 Part 4 - Evaluation . 7

I Requirements Gathering 11

2 Requirements from Organisational Learning 13
2.1 Relevant Content Types . 15
2.2 Requirements on Data Representation 16

3 Experiences from eLearning 19
3.1 Decomposition of Content . 20
3.2 Collaborative Learning through Communication 21
3.3 Learning Support using Process Models 21
3.4 Requirements on Data Representation 22

II Refinement & Representation 25

4 Structured Refinement of Content Types 27
4.1 Process . 29

4.1.1 Check against other Reference Models 36

i

ii CONTENTS

4.1.2 Summary . 45

4.2 Content . 46

4.3 Communication . 48

4.4 Meta-Data . 49

4.5 Inter-model Aspects . 49

4.5.1 Extensibility . 51

5 Data Representation Concepts 53

5.1 Topic Maps . 55

5.2 RDF & OWL . 57

5.2.1 RDF & OWL Overview . 57

5.2.2 Towards integration with Topic Maps 58

III System Design & Implementation 61

6 Overview 63

6.1 Technical Constraints for Scholion-Integration 64

7 Topic Map Engine 67

7.1 Persistency . 68

8 Representation of OL Content 73

8.1 Mapping Content Models to Topic Maps 74

8.2 OL Management Layer . 76

8.3 Scholion Data Importer . 79

IV Evaluation 81

9 Content Structure Visualization 83

10 Evaluation Design 87

10.1 Formal Tests . 89

10.2 User Evaluation . 91

11 Evaluation & Results 93

11.1 Formal tests . 93

CONTENTS iii

11.2 User evaluation . 96

12 Conclusions 99

12.1 On the Use of Topic Maps . 100

12.2 On relevant Schools of Knowledge Management 101

12.3 On Directions for further Development 102

References 104

Appendix 114

A Approaches to Organisational Learning 117

A.1 Concepts focusing on the Learning Process 118

A.1.1 March & Olsen . 118

A.1.2 Argyris & Schön . 118

A.1.3 Huber . 119

A.1.4 SECI-Model (Nonaka, Takeuchi & Krogh) 119

A.1.5 The Fifth Discipline (Senge) 120

A.1.6 Kim . 120

A.1.7 Stoiber . 121

A.1.8 ENRICH (Mulholland et al.) 121

A.1.9 Theory U (Scharmer, Senge, Jaworski & Flowers) 122

A.1.10 Knowledge Lifecycle (Firestone & McElroy) 122

A.1.11 Value Networks (Allee) . 122

A.2 Concepts focusing on Objects of Learning 123

A.2.1 Stein . 123

A.2.2 Abecker & van Elst . 124

A.2.3 Eulgem . 125

A.2.4 Linger & Burstein . 125

A.2.5 Ramesh . 126

A.2.6 Le, Lamontagne & Nguyen 126

A.2.7 Wargitsch & Wewers . 127

iv CONTENTS

B ISO Topic Map Details 129
B.1 Topics . 129

B.1.1 Topic Names & Variants 130
B.2 Associations . 131

B.2.1 Association Roles . 132
B.3 Occurrences . 132
B.4 Further Building Blocks . 133

B.4.1 Scope . 134
B.4.2 Meta-Elements - Types . 134
B.4.3 Reification . 135
B.4.4 Merging . 136
B.4.5 Subject Identifiers & Locators 136

C Topic Map Engine 137
C.1 Package ce.tm4scholion.tm . 137

C.1.1 Class Association . 138
C.1.2 Class AssociationRole . 144
C.1.3 Class Manager . 147
C.1.4 Class Manager.RoleTopic 164
C.1.5 Class Occurrence . 165
C.1.6 Class Reifiable . 170
C.1.7 Class Scope . 172
C.1.8 Class Statement . 176
C.1.9 Class Topic . 178
C.1.10 Class TopicMap . 188
C.1.11 Class TopicMapConstruct 193
C.1.12 Class TopicName . 196
C.1.13 Class Utils . 202
C.1.14 Class Variant . 206

C.2 Package ce.tm4scholion.tm.persistency 210
C.2.1 Interface TMPersistency 211

D OL Content Models 213
D.1 Package ce.tm4scholion.metamodel 214

D.1.1 Class Element . 214
D.1.2 Class Manager . 218

CONTENTS v

D.1.3 Class Manager.RoleElementCombination 225
D.2 Package ce.tm4scholion.metamodel.common 226

D.2.1 Class Course . 227
D.2.2 Class Manager . 229
D.2.3 Class Subject . 230

D.3 Package ce.tm4scholion.metamodel.learning 232
D.3.1 Class Block . 232
D.3.2 Class LearningUnit . 235
D.3.3 Class Manager . 236

D.4 Package ce.tm4scholion.metamodel.communication 237
D.4.1 Class Entry . 238
D.4.2 Class EntryContainer . 239
D.4.3 Class Manager . 241

D.5 Package ce.tm4scholion.metamodel.communication.chat 244
D.5.1 Class Chat . 244
D.5.2 Class ChatEntry . 246
D.5.3 Class Chatroom . 247

D.6 Package ce.tm4scholion.metamodel.communication.forum 249
D.6.1 Class Discussion . 249
D.6.2 Class DiscussionEntry . 250
D.6.3 Class DiscussionTopic . 251
D.6.4 Class Forum . 253

D.7 Package ce.tm4scholion.metamodel.communication.infoboard . . 254
D.7.1 Class Infoboard . 254
D.7.2 Class InfoboardEntry . 255

vi CONTENTS

List of Figures

1.1 Relationships between Goals . 4

1.2 Overview of Structure of this Work 9

3.1 Learning support with process models 22

4.1 Information Types for OL . 28

4.2 The mediational structure of an activity system (taken from [Eng87]) 32

4.3 Conceptual model for procedural content - Meta-level 34

4.4 Conceptual framework for procedural content - A detailed view
on model elements . 37

4.5 Modeling approaches for relevant aspects of business information
systems . 38

4.6 WFMC Basic Process Definition Meta-model (taken from [Wor95]) 38

4.7 Meta Model for Task Modeling (adapted from [vW01]) 40

4.8 Meta Model for Process Modeling (taken from [SAJ+02]) 43

4.9 Conceptual Content Framework 48

4.10 Conceptual Communication Framework 50

5.1 Topic Maps - Basic Elements (taken from [ISO06a]) 56

5.2 Topic Maps - Structural Overview 56

6.1 Architectural Overview . 64

7.1 Topic Map Engine - Class Hierarchy Overview 69

7.2 Topic Map Engine - Class Property & Association Overview 71

8.1 Representation of Scholion Content using TopicMap concepts . . 77

8.2 Structure of OL Management Layer 78

vii

viii LIST OF FIGURES

9.1 Example of Content Structure Visualisation 84

11.1 Visualisation of complete topic map structure 94

B.1 The Semiotic Thetrahedon (adapted from [FHL+98]) 130
B.2 Topic Maps - Topic (taken from [ISO06a]) 130
B.3 Topic Maps - Topic Naming . 131
B.4 Topic Maps - Association (taken from [ISO06a]) 132
B.5 Topic Maps - Occurrences . 133
B.6 Topic Maps - Full Overview . 133
B.7 Topic Maps - Example for super/subtyping and instancing 135

D.1 Overview of currently implemented content model structure . . . 213

List of Tables

4.1 Mapping of the WfMC Reference Model to the Conceptual Model 39
4.2 Mapping of the Task Modeling Meta Model to the Conceptual Model 41
4.3 Mapping of the Process Modeling Comparison Framework to the

Conceptual Model . 44

ix

Chapter 1

Introduction

'Where shall I begin, please your Majesty?' He
asked.
'Begin at the beginning,' the King said, very
gravely,
'and go on till you come to the end: then stop.'

The White Rabbit & the King in [Car66]

The title of this work is Flexibility of Content for Organisational Learning.
Consequently, the overall goal is to develop a means to flexibly represent and
manage content for organisational learning.

1.1 Motivation

Many approaches to explain and/or define the process and the objects of or-
ganisational learning have been proposed in the last decades. Most of these ap-
proaches give detailed statements on the process of organisational learning or
focus on the enablers of and obstacles within this process. However, when it
comes to the objects of organisational learning, they either remain unspecific
(e.g. Argyris & Schön [AS78] or March & Olsen [MO82]) or explicitly argue for
being open in these terms (e.g. Kim [Kim93] with his statements on mental mod-
els or Firestone & McElroy [FM03b] with their definition of knowledge claims).

The ambiguity and uncertainty of what to learn in organisational learning
remains uncritical as long as the frame of reference is a purely social one (in
contrast to socio-technical systems). Considering organisations as social sys-
tems, organisational learning (OL) occurs directly among individuals. The main

1

2 CHAPTER 1. INTRODUCTION

concern of most OL approaches is to enable and aid the learning process itself,
the objects of learning are of lower interest, as they are transfered directly on an
interpersonal level.

Considering organisations as socio-technical systems, however, broadens the
scope of possible carriers and facilitators for OL. Especially ICT-based tools to
enable and support learning provide a promising infrastructure for OL. In the
ICT-context, knowing the objects of learning becomes crucial. For ICT-supported
learning, content has to be represented in data structures, which requires to have
a defined data model. A data model can only be designed, if the data to be rep-
resented (and thus the objects of learning) are known.

As mentioned before, most OL approaches consider the objects of learning
to be of arbitrary form and structure (e.g. see Firestone & McElroy [FM03b]).
ICT-support of OL can only be enabled, if a form of representation is found, that
allows flexible management of arbitrary information relevant in the context of
OL.

1.2 Specification of Subgoals

The subgoals given in the following define the scope of research for this work.
Each of them is put into the context of the global goal (giving a rationale in doing
so). The tasks to reach a subgoal are defined for each of them. Figure 1.1 shows
the relationships between the subgoals.

1. Identification of requirements on representation from OL
Specifies the details on what flexibility in representation means from an
OL point-of-view

• Review of OL approaches regarding statements on how objects of learn-
ing have to be (re)presented

• Extraction of requirements on representation

2. Identification of content types relevant for OL
Identifies potential objects of learning OL and so provides examples for
the need of flexible representation of content

• Review of OL approaches regarding statements on relevant objects of
learning

1.2. SPECIFICATION OF SUBGOALS 3

• Consolidation of statements and extraction of content types consid-
ered relevant for this work

3. Identification of requirements on content representation in ICT-supported
learning
Determines the concepts of content representation to enable individual
learning in ICT-supported settings

• Review of existing eLearning concepts regarding statements on how
learning content is (re)presented

• Review of an existing platform implementation regarding the techni-
cal requirements on representation

4. Finding a appropriate concept for representation
Identifies an approach to data representation which matches the require-
ments identified above

• Identification of a concept for representation based on the require-
ments

• Development of transformations between content requirements and
actual representation

5. Representation of different types of content
Shows how different types of content can be represented meeting the de-
fined requirements

• Development of data models for each identified content type based on
the requirements on data representation

6. Technical realisation of representation and management
Brings together means and subject of representation and provides the ac-
tual result of this work

• Design and implementation of the data management logic

• Design and implementation of interfaces to access content

7. Checking the functionality and appropriateness of the developed concepts
and implementations
Shows that the proposed concepts work technically

4 CHAPTER 1. INTRODUCTION

• Formal software test of implemented components

• User evaluation of the implemented system

Figure 1.1: Relationships between Goals

1.3 Structure of this Work

In this section, the structure of this work is presented. Each chapter is assigned
to specific subgoals.

1.3. STRUCTURE OF THIS WORK 5

At the beginning of each chapter, its goals are put into the context of the
whole work and so set a frame of reference for the presented content. At the end
of each chapter, recapitulation of the rsults points ot the contributions to the
overall goal.

The descriptions given here already anticipate some results of the first chap-
ters (in mentioning Topic Maps as an appropriate means of representation). In
this way, a brief and structured overview of this work is presented here.

1.3.1 Part 1 - Requirements Gathering

Chapter 2 - Requirements from Organisational Learning In this chap-
ter, the tasks of subgoals 1 and 2 are described. A literature study on organisa-
tional learning and organisational memories is carried out. The focus of this
study is on statements of relevant types of organisational knowledge and re-
quirements on representation. Annex A complements chapter 2 with the de-
tailed results of the review. The results of this chapter are twofold. First, a list of
requirements on representation derived from OL approaches is given. Second,
a set of content types considered relevant is consolidated from the statements
on the objects of learning in OL approaches.

Chapter 3 - Experiences from eLearning Chapter 3 focuses on the eLearn-
ing platform Scholion as a representative platform to be further developed. Scho-
lion is used as an sample platform, on which the transition from eLearning to OL
support is shown. The underlying concepts and their implications on represen-
tation of content are described. In addition, an approach using process visual-
izations to facilitate learning is reviewed, as the concept is considered relevant
for OL. This chapter covers subgoal 3 and results in a set of requirements on
(re)presentation from ICT-supported learning.

1.3.2 Part 2 - Refinement & Representation

Chapter 4 - Structured Refinement of Content Types In chapter 4 the
identified content types are brought together with the requirement on fine-grain
content decomposition set by Scholion. For each content type, a structured,
block-oriented model is developed. The structure of the types already used in

6 CHAPTER 1. INTRODUCTION

Scholion are derived from the concepts applied there. The new content type
'work process' is developed from scratch based upon the conceptual framework
of activity theory. This chapter covers subgoal 5 and presents models of every
identified content type as results.

Chapter 5 - Data Representation Concepts This chapter sets out to iden-
tify and describe the actual means of data representation and thus covers sub-
goal 4. The technical requirements on the data representation concept are de-
rived from the conceptual requirements identified in chapter 2 and 3. Based
upon these requirements, two possible approaches are identified, of which topic
maps are selected as the more suitable one. The basic concepts of topic maps are
described and mapped to the requirements. Annex B complements this descrip-
tion with details on topic map constructs. The second approach, RDF/OWL,
is then reviewed regarding possible complementing or conflicting concepts. The
decision to use topic maps as the concept for content representation in this work
is the result of this chapter.

1.3.3 Part 3 - System Design & Implementation

Chapter 6 - System Design Overview Chapter 6 gives an overview of the
system's architecture and the components to be implemented. The demand for
integration in an existing IT infrastructure leads to implementation constraints,
which are also presented here. Chapter 6 thus contributes to reaching subgoal
7 by setting the frame of reference for implementation. There are two results of
this chapter: the top level architecture and the technical constraints for imple-
mentation.

Chapter 7 - Topic Map Engine The implementation of the topic map con-
cepts for data representation is presented in chapter 7. It contributes to reaching
subgoal 6 by providing the core, low-level data management component. Annex
C provides implementation details of the topic map engine. In addition, means
to store and retrieve topic maps are presented. The major output presented in
this chapter is the topic map engine, which is the basis for all further implemen-
tations.

1.3. STRUCTURE OF THIS WORK 7

Chapter 8 - Representation of OL Content In this chapter, the content
models developed in chapter 4 are broken down to actual topic map-based rep-
resentations. The identification of common structures in the various models
provides the foundation for concepts for consistent representation of arbitrary
content. A meta-model representing the mapping of models to topic maps is
defined and implemented for all content types. Annex D gives details on the im-
plementation for these components. The resulting content management layer
completes the work on reaching subgoal 6.

1.3.4 Part 4 - Evaluation

Chapter 9 - Content Structure Visualization An application for content
structure visualization is designed and developed as a proof of concept in chap-
ter 9. This application is also used for the detailed tests on functionality and
applicability in actual usage scenarios. Based upon the GraphViz toolset, a visu-
alizer is developed, that generates hyperlinked graphical representations of the
content structure including links to exemplary content. This chapter contributes
to reaching subgoal 7 by demonstrating the basic feasibility of the approach and
providing the means of detailed evaluation.

Chapter 10 - Evaluation Design In chapter 10, the evaluation of the de-
veloped concepts and the system implementing them is planned. Evaluation is
carried out on two levels. First, a technical evaluation regarding correct func-
tionality is carried out. For this part, detailed tests and criteria to be met are
specified. The second part checks feasibility and appropriateness of the imple-
mented concepts in a user test. Both parts use exemplary content designed to
cover all implemented concepts and functions. The result of this chapter is the
evaluation design for this work including test cases and criteria. This contributes
to reaching subgoal 7.

Chapter 11 - Evaluation & Results In chapter 11, the results of evaluation
are described based upon the evaluation design given in the former chapter. The
components to be refined or completed in future work are identified. The results
of this chapter allow to reach subgoal 7.

8 CHAPTER 1. INTRODUCTION

Relationships among Chapters The chapters are related to each other ba-
sically along the goal structure given in figure 1.1. Figure 1.2 shows the relation-
ships between the chapters based on the top level results.

1.3. STRUCTURE OF THIS WORK 9

Figure 1.2: Overview of Structure of this Work

10 CHAPTER 1. INTRODUCTION

Part I

Requirements Gathering

11

Chapter 2

Requirements from
Organisational Learning

The reality is that successful, and sustainable,
adaptation is driven by distributed Knowledge Pro-
cessing, characterized by free thinking workers
whose self-organizing patterns create organiza-
tional knowledge in an atmosphere of openness in
problem recognition, solution formulation, and so-
lution evaluation.

Joseph M. Firestone and Mark W. McElroy in [FM03a]

Objectives of Chapter 2

In this chapter, approaches to explain and describe aspects of
Organisational Learning are examined. There are two goals in this
chapter. The first is to identify the types of content relevant for OL. The
second goal is to derive requirements on data representation from the
reviewed approaches. The latter is necessary as a basis for discussion
of suitable forms of data representation. The types of content will
be refined and mapped to the chosen form of representation to show
feasibility of the approach in chapters 5 and 8.

For identification of the relevant types of learning and the requirements on
data representation, existing work on organisational learning is reviewed. In
OL, most approaches focus on one of the two following points of view:

13

14 CHAPTER 2. REQUIREMENTS FROM ORGANISATIONAL LEARNING

Focus on the process of learning , that is how an organisation learns and
how to facilitate learning. In this context, statements are also given on
what to learn and requirements on (re)presentation for learning. Approaches
focusing on these aspects are often referred to as Organisational Learning
Frameworks

Focus on the objects of learning , that is which types of content are rele-
vant for an organisation to store and distribute. Approaches focusing on
this area of research are often also referred to as Organisational Memo-
ries.

Hardly any approach can be assigned to only one of these foci in all its aspects.
Consequently, not difference is made between the categories as regards review.
However, for a more structured overview, the reviewed approaches are sorted
according to their main focus.

In her PhD-thesis [Sto03], Stoiber has reviewed frameworks for organisa-
tional learning and organisational memory concepts. Considering her work and
the evolution of OL-research since then, her list has been extended by more re-
cent approaches. These approaches have been reviewed regarding types of con-
tent and requirements on data representation. A detailed description of this re-
view is given in annex A. In the following, only the results are presented. A more
comprehensive overview of most of the presented OL- and OM-models is avail-
able in [Sto03].

The following approaches have been reviewed:

• Concepts focusing on the learning process

– Cycle of Choice (March &
Olsen)

– Argyris & Schön

– Huber

– SECI-Model (Nonaka, Takeuchi
& Krogh)

– The Fifth Discipline (Senge)

– Kim

– Stoiber

– ENRICH (Mulholland et al.)

– Theory U (Scharmer, Senge,
Jaworski & Flowers)

– Knowledge Lifecycle (Fire-
stone & McElroy)

– Value Networks (Allee)

2.1. RELEVANT CONTENT TYPES 15

• Concepts focusing on the objects of learning

– Stein

– Abecker & van Elst

– Eulgem

– Linger & Burstein

– Ramesh

– Le, Lamontagne & Nguyen

– Wargitsch & Wewers

From the studied OL frameworks it can be concluded, that organisational
learning always involves or is primarily based on individual learning processes.
Consequently, both, individual learning and bringing together the individuals
for an organisational learning step, has to be supported to enable OL.

2.1 Relevant Content Types

Summarizing the results of sections A.1 and A.2 in annex A, the following in-
formation types are considered relevant. The references in brackets refer to the
approaches which argue for the respective requirement.

• Structured, sequential representations of work (Stoiber, Stein, Abecker &
van Elst, Wargitsch & Wewers)

• Networked, graphical representations of organisational structure (Stoiber,
Allee, Le et al.)

• Textual representation of work- and organisation-relevant information (Mul-
holland et al., Abecker & van Elst, Eulgem, Linger & Burstein, Ramesh, Le
et al., Wargitsch & Wewers)

• Prescriptive representation of (standardized) work processes (Stein)

• Narrative representation of information, communication (Abecker & van
Elst, Wargitsch & Wewers)

• Information about processes within organisations (Argyris & Schön, Stoiber,
Allee, Stein, Abecker & van Elst, Eulgem)

• Information about organisational structure (Stoiber, Allee, Stein, Abecker
& van Elst, Eulgem)

16 CHAPTER 2. REQUIREMENTS FROM ORGANISATIONAL LEARNING

• Conceptual, declarative understanding of real world phenomena (Nonaka
& Takeuchi, Kim, Allee, Stein, Abecker & van Elst, Linger & Burstein, Ramesh,
Le et al.)

• Descriptions of how to perform a task, know-how, rules, norms (Nonaka &
Takeuchi, Kim, Stoiber, Allee, Stein, Abecker & van Elst, Linger & Burstein,
Ramesh, Le et al.)

• Structural meta data about information objects (Abecker & van Elst)

• Domain-specific meta data about information objects (Abecker & van Elst,
Ramesh)

• Background information that aids understanding of actual learning con-
tent (Le et al.)

Summing up, these statements lead to the following types of content consid-
ered relevant for OL in this work:

• Structured, graphical descriptions of work and its organisational context

• Textual descriptions of information relevant in an organisation

• Communication

• Meta-data to describe any of these

2.2 Requirements on Data Representation

The following requirements on content for OL can be derived from the reviewed
approaches:

• Provide information that is relevant in the current context of work (March
& Olsen, Mulholland et al., Linger & Burstein)

• Provide the actual work context to learning content (Mulholland et al.,
Firestone & McElroy)

• Provide information to discover and resolve mismatches between expected
and observed behaviour (Argyris & Schön, Firestone & McElroy)

2.2. REQUIREMENTS ON DATA REPRESENTATION 17

• Support the exchange of uncodified (implicit) information (Argyris & Schön,
Huber, Nonaka & Takeuchi, Krogh, Senge)

• Provide manifold, media-rich representations of learning content (Huber)

• Provide means of efficient navigation and content access to avoid informa-
tion overload (Huber)

• Provide means to distribute individual insight and findings (Kim, Krogh)

For selection of a means for representation, the following features are con-
sidered necessary. They are derived from the statements given above. Repre-
sentation has to allow:

• representation of different content types

• storage of single content elements in different, arbitrary forms of (re)presentation

• adding individual information and remarks to content

• putting content elements into arbitrary relationship with each other

• attaching structural and domain-specific meta-data to content elements

Chapter 2: Summary

The requirements on data representation and the content types
relevant for OL have been derived from an extensive review of OL
approaches in this chapter. The former are used as a basis for selection
of the actual form of data representation. The latter are refined (using
the concepts presented in the following chapter) and mapped to the
selected form of representation. This allows to represent content in
each of the identified types and is necessary to show feasibility of the
approach.

18 CHAPTER 2. REQUIREMENTS FROM ORGANISATIONAL LEARNING

Chapter 3

Experiences from eLearning

The problem with even the best learnings is that
without some kind of infrastructure for thinking
things through and a way to codify the learnings in
a coherent way, we often stay stuck in situational,
fragmented, or opportunistic learning.

Daniel H. Kim in [Kim01]

Objectives of Chapter 3

The structuring of content for eLearning is reviewed in this chap-
ter. This work sets out to extend the functionality of a concrete
eLearning platform, Scholion [AS05a]. Using Scholion as a sample
platform, this work shows, how the transition from eLearning to OL
support might work. Thus, focus is on the concepts developed and
implemented there. The results of this chapter will add to the basis for
discussion of suitable representation concepts.

As stated before, organisational learning always involves individual learning
processes. These can be supported with ICT-based tools, as research in the do-
main of eLearning has shown in the last years (e.g. cf. to [Aui03] for evaluation
results of the platform extended in this work). Previous research in content engi-
neering for eLearning ([AS05b], [AS05a]) argues for decomposition of learning
content into semantically consistent blocks (e.g. examples, definitions or mo-
tivations). These blocks have to be provided in different forms of presentation

19

20 CHAPTER 3. EXPERIENCES FROM ELEARNING

to support different learning situations. Knowledge transfer among all partic-
ipants is facilitated by means of communication in the context of the learning
content.

Another aspect of learning support has been adressed by Kienle, Herrmann
et al. (e.g. [CHKM05][KH04b]) They have examined the role and potential of
guiding process models in collaborative eLearning settings (which are also rele-
vant for the support of OL, as identified in chapter 2).

3.1 Decomposition of Content

The basic building blocks for content presentation in Scholion are Blocks and
Learning Units. Learning units correspond to the concept of learning objects
in literature (e.g. [Sch05b], [Paw01] or [Pol03]). Learning objects are self-
contained representations of a certain topic. They should be of similar gran-
ularity, e.g. each representing the equivalent of one lesson and should have a
standard structure to provide a coherent appearance [Sch05b].

The internal structuring of learning units is done with blocks. A block is the
basic unit of decomposition and representes a content element with a certain se-
mantic connotation, which is explicitly defined in block types. These block types
are didactically motivated and can be extended or altered domain-specifically.
Examples of block types are example, definition, motivation or code (to give a
domain-specific type from software-engineering domain).

Making use of the block type concept, didactic patterns can be specified,
which provide support for consistent authoring of learning content. Learning
units (and consequently blocks) can also be made available in different levels
of detail. Depending on the learning setting, the learner can choose between
LOD 1 (keywords, slide-oriented), LOD 2 (full text, textbook-oriented) and LOD
3 (additional or background information). Both, learning units and blocks, are
complemented by structural and domain specific meta data, such as author,
creation date or keywords.

The concepts presented so far are generic means for content structuring and
augmentation, that are applied on a global, not learner-specific level. Scholion
furthermore uses concepts for individualization of content. Views can be con-
sidered individual overlays for content that contain annotations, mark ups or
links. Views enable learners to personalize their learning content by integrat-

3.2. COLLABORATIVE LEARNING THROUGH COMMUNICATION 21

ing individual semantic information into learning content or linking to related
information.

3.2 Collaborative Learning through Communi-

cation

Communication support is considered very relevant for eLearning in order to
enable group work like in traditional, presence-based learning settings [Aui03]
- this is especially true for OL support (cf. chapter 2).

Scholion provides means for synchronous and asynchronous communica-
tion, unidirectional from teacher to learner as well as bidirectional among all
participants. The infoboard is a means to publish information on a virtual bul-
letin board (asynchronous, unidirectional). For bidirectional communication
Scholion provides forums (asynchronous) and chats as well as an instant mes-
senger (synchronous).

Furthermore it is possible to share views among members of a learning group
or to provide access to certain views for all participants. This allows content-
based asynchronous collaboration among learners, where communication is al-
ways linked to the actual learning context.

3.3 Learning Support using Process Models

In recent work, Carell et al. ([CHKM05], [KH04b], [KH04a]) have examined the
effects of visual guidance through the learning process in eLearning. They have
integrated visual models of the learning tasks into an eLearning plattform and
have linked tasks to learning content and communication features. Their ap-
proach enables learning in the context a university studies setting. The concepts
applied there are not restricted to usage in institutionalized learning. Although
not yet evaluated, they seem to be applicable in OL support, too. Providing the
work context of learning is a requirement for successful OL support.

Figure 3.1 shows, how process support is implemented. Learners are pre-
sented a visual representation of the tasks necessary to complete the learning
unit. Tasks are decomposed to a level, on which they are comprehensible for

22 CHAPTER 3. EXPERIENCES FROM ELEARNING

users, so that they can start learning immediately and put their skills into the
context of the overall task.

Figure 3.1: Learning support with process models

The results of the study they conducted seem promising: They state that the
usage of graphical process models during the preparation of the collaboration
can lead to more knowledge exchange and integration, as well as commitments
concerning the collaborative learning process, and a more intensive and col-
laborative usage of the CSCL-system [CHKM05]. These results encourage to
follow similar concepts in extending Scholion with features for organisational
learning.

3.4 Requirements on Data Representation

All the concepts presented here rely upon fine-grain decomposition of content.
Learning content is not treated as one single document but is decomposed into
semantically consistent learning blocks. Communication content is also pro-
cessed on the level of single contributions to discussions. Consequently, the level
of granularity in process visualizations is also brought down to single tasks.

Content of any kind is assembled again by specifying relationships among the
learning blocks. In most cases these relationships are hierarchical or sequential.

3.4. REQUIREMENTS ON DATA REPRESENTATION 23

However, there are some cases within content types but especially on a global,
inter-type level - where relationships with open semantics are needed (e.g. when
linking learning content with communication, an 'refines' or 'discussed in' rela-
tionship type makes sense).

For data representation, this leads to a demand for a concept that allows

• arbitrarily definable blocks of content

• arbitrarily definable association of blocks of any type

• arbitrarily definable forms of representation of content blocks

Chapter 3: Summary

This chapter completes the basis for discussion of a suitable form
of data representation. While in the former chapter, focus was on the
content dimension, this chapter has focused on the didactic dimen-
sion. The requirements of both chapters lead to the selection of a data
representation concept in the next part.

24 CHAPTER 3. EXPERIENCES FROM ELEARNING

Part II

Refinement & Representation

25

Chapter 4

Structured Refinement of
Content Types

The widespread attitude of researchers in the in-
formation system field to create Yet Another Mod-
elling Approach (the 'YAMA Syndrome'), without
addressing the question of its justification and its
scientific value added sufficiently, is another one.
The variety of existing modelling languages and di-
alects is therefore unnecessarily large. Apart from
a lot of subjectivity, a lot of arguments like 'apples
taste better than oranges', there are also some good
reasons for differences, as far as substantial as-
pects are concerned. Different designers and users
of an information system may view the world dif-
ferently.

E.D. Falkenberg et al. in the FRISCO Report [FHL+98]

Objectives of Chapter 4

In this chapter, the information types identified in the last part are
refined to structured, block-oriented models of content representa-
tion. This is necessary to meet the requirements of eLearning-support,
where decomposition of content is a fundamental concept. The models
developed here are used for the specification of content representation.

For structured data representation, specification of data models is necessary.

27

28 CHAPTER 4. STRUCTURED REFINEMENT OF CONTENT TYPES

In the former part, three content types have been identified. The refinement into
object-oriented data models is carried out for these three here. However, also
other content types can be relevant dependent on the application domain. Those
have to be refined in the same way to be representable using this approach. The
three types examined here are:

• Work-Process (procedural information)

• Learning-Content (descriptive information)

• Communication (narrative information)

These three have to been intertwined (like it is already the case with learning
content and communication in Scholion). A fourth content type - meta-data -
is used to provide further context for the respective element (not in the sense
of organisational context but as in the sense of an element life-cycle documen-
tation) (see figure 4.1). While learning-content, communication and meta-data
are basically adopted from the existing concepts in Scholion, work process has
to be developed from scratch based on previous research in this area.

Figure 4.1: Information Types for OL

The developed models together form a conceptual framework for OL content
representation. This conceptual framework follows a multi-level approach of
model representation. It contains means to represent models as well as model
instances (e.g. cf. to section 4.1 for the part on representation of procedural
information and models).

4.1. PROCESS 29

4.1 Process

In this section, the conceptual model for process representation is derived from
foundations in Cultural Historical Activity Theory (CHAT). It is then contrasted
with several other reference-models in the process- and task-modeling area to
cross-check expressiveness and unambiguousness of possible mappings to those
approaches.

The conceptual model is based on Leontiev's Activity Theory [Leo78]. In
its further developed and extended form ([Eng87], [CE93]), Cultural Historical
Activity Theory is capable of explaining how people work together. CHAT is
widely acknowledged as a appropriate foundation for research in the fields of
HCI (e.g. [KNM99], [Nar96]), Software Engineering [DR97] or Organisational
Learning (e.g. [VK00], [Eng05]). For an comprehensive introduction to Activity
Theory, with an emphasis on HCI research, see [BB03].

Following the introductions to Activity Theory and the implications on prac-
tical design given in [BB03] and [KNM99], the following aspects of describing
human work can be identified:

The central elements in Activity Theory are activities. An activity describes
the relationship between a subject (an actor) and some kind of object (which are
either tangible or intangible). The further description is cited from Bertelsen et
al. [BB03]:

Activity is directed to satisfy a need through a material or ideal object. The
subject’s reflection of (including expectation to) this object is the motive of the
activity. Human activity is carried out through actions, realising objective re-
sults. These actions are governed by the conscious goals of the subject. Goals
reflect the objective results of action. Actions are conducted by series of opera-
tions, each 'triggered' by the conditions and structure of the action.

Activity Theory introduces a hierarchical relationship between activity (which
is directed towards fulfilling a certain motive), actions, which are conducted by
individual actors (subjects) to fulfil a certain goal (in the context of the activity)
and operations as the most basic element. Operations describe the concrete way
of execution an action and are triggered by specific conditions in the context of
the respective action's goals. Instances of this hierarchy are not fixed. An op-
eration in one context is considered an activity aiming at an explicit motive in
another context. The distinction between an action and an operation depends on

30 CHAPTER 4. STRUCTURED REFINEMENT OF CONTENT TYPES

the expertise and skills of the subject. An operation for one person is considered
an action by another person, which needs further refinement into operations in
order to break down complexity. An example is given in [RFW]:

The level of a particular activity depends less on the actual activity and more
on the person or group undertaking it, eg, applying for a position may be

• an activity for a first-time applicant and his family and friends

• an action for an experienced applicant familiar with the industry and the
selection processes likely to be used

• an operation for a skilled user of online job sites with a well developed
CV...

These specifications allow the identification of the first elements for the con-
ceptual model:

The WHAT aspect contains elements for describing what is done:

Activity The framing element for every modeling task. In general, a model
contains exactly one activity. Activity thus can be considered synony-
mous to the notion of work process. Consequently, the activity is com-
mon for all participants involved in a work process.

Action Actions are the central building blocks of an activity. They are
carried out by individuals, who want to reach a certain goal by ac-
complishing the action. Actions do only describe what has to be done
and do not describe how it is performed.

The WHY aspect contains elements for describing the objectives of the WHAT
aspect:

Motive The motive describes the objective of the whole activity. While it
the motive ideally is the same for all involved participants, also indi-
vidual differences may show up.

Goal Goals describe the objectives of actions. They may be different for
each participant but should always contribute to the overall motive.

The HOW aspect contains elements for describing how certain actions are ac-
complished:

4.1. PROCESS 31

Operation Operations refine actions in terms of how an action is actu-
ally accomplished. Several sets of different operations are possible to
accomplish a certain action. Operations are generic in the sense that
they are unspecific to the framing activity and per se do not have a
certain goal (but contribute to these of the actions they are contained
in).

The WHEN aspect contains elements for describing the causal order and trig-
gers of operations for a certain action:

Condition Conditions trigger operations in the context of a certain ac-
tion and so form the bridge between the WHAT and the HOW aspect.
Where applicable, they also determine the causal order of the opera-
tions to be accomplished. In the same manner, conditions form the
bridge between activity and actions.

The WHO aspect describes who is involved in an activity (by performing cer-
tain actions):

Subject Any individual participant of an activity is a subject.

The USING WHAT aspect describes the objects involved in an activity:

Object An object is the element an activity is directed to. It has the poten-
tial to fulfil the needs of the involved subjects defined in the motive.
Objects are either tangible (material) or intangible (immaterial) and
are the most central ressource within an activity.

Stepping back to the theoretical foundations in Cultural Historical Activity
Theory again allows to further refine and complete the conceptual model. Fur-
ther aspects of human activity have been introduced by Engeström [Eng87] based
on Leontiev's works (cf. Figure 4.2):

The triangle describes the structure of an activity and has to be considered
to be orthogonal to the 'activity-action-operation'-hierarchy. While subject and
object have already been described, the remainder of the triangle is made up of
so-called social mediators relevant to the activity. These mediators are:

• instruments, which are either real, tangible means of manipulation for ma-
terial or data or signs and representations of arbitrary kinds. The con-
cept of instrument has to be seen in its broadest sense and embraces both

32 CHAPTER 4. STRUCTURED REFINEMENT OF CONTENT TYPES

Figure 4.2: The mediational structure of an activity system (taken from [Eng87])

technical tools, which are intended to manipulate physical objects (e.g.,
a hammer), and psychological tools, which are used by human beings to
influence other people or themselves (e.g., the multiplication table or a
calendar). [KNM99]

• rules which apply in the context of the activity

• community which forms the social context of the activity

• division of labor which refines the activity in terms of collaboration

Considering the mediational triangle and the checklists for practical applica-
tion of activity theory given in [BB03] and [KNM99], the conceptual framework
can be complemented with the following elements:

Refining the USING WHAT aspect Instruments introduce a greater vari-
ety of elements in the 'with what' aspect:

Tools are instruments, which are used within an operation to manipulate
something

Material are instruments, which are manipulated within an operation.
They are either tangible or intangible and can be preexisting, created
and/or used/altered within an operation

Knowledge describes 'Know-What' that is needed to perform an opera-
tion (in contrast to 'know-how', which is modeled by skills).

4.1. PROCESS 33

Skills describe 'Know-How' necessary to perform an operation. In con-
trast to 'knowledge', a skill represents expertise necessary to perform
something.

Refining the WHAT aspect The introduction of the 'division of labour' as-
pect enables refinement of the 'what' aspect in terms of distinction of own
and others' actions in an individual model:

Producing Actions are actions which produce something, i.e. which
have a definable, externalized output. This output is not necessar-
ily tangible, materialized but may also be intangible like a computer
file. The main distinctive property to an internal action is, that a pro-
ducing action's results can be directly handed over to somebody else

Internal Actions are cognitive actions of an individual, with no visible
effect on the outer world. An internal action's results are always inter-
nalized, within someone's brain and cannot be handed over directly
to somebody else

Conversational Actions are actions which involve at least two subjects.
Conversational actions are used when either material or information
is transfered from one subject to another

Refining the WHO aspect the checklist of [BB03] claims for a description
of what different kinds of people are needed to produce [...]. Thus, the
'community' dimension can only be fully captured within the models by
the introduction of additional elements:

Group of Subjects This element represents any formal or informal group
of subjects. A formal group is, e.g. an organisational unit, a prototype
for an informal group is, e.g. a community of practice [Wen99]

Role A role is defined by a set of necessary skills and can be taken by a
subject who has these skills. Roles also may formally defined or may
have developed informally. Formal roles are part of an organisation's
structure, e.g. are linked to positions within an organisation. Infor-
mal roles can be found in every group of people and are never defined
explicitly. The relevance of the latter category has been examined by
[JRH05].

34 CHAPTER 4. STRUCTURED REFINEMENT OF CONTENT TYPES

The NORMATIVE aspect To represent the 'rules', a way to express norma-
tive information within the models is needed:

Rules are used to define to normative aspects of an activity. They always
operate on the elements used to model the activity and express issues
that constrain the activity's execution. Rules are expressed in natural
language in the course of modeling and may only contain references
to elements that are contained in the respective model.

On a meta-level, the conceptual model considers the aspects of work pro-
cesses given in Figure 4.3.

Figure 4.3: Conceptual model for procedural content - Meta-level

Consequently, as already indicated above, there are relationships between
the elements of the conceptual model:

Hierarchical relationships always describe a 'part-of' relationship in the con-
text of the model:

• an activity consists of a set of actions

• an action may contribute to several activities

• an action may consist of a set of subactions

• an action consists of a set of operations

4.1. PROCESS 35

• an operation may be carried out in the context of different actions

• a organizational units contains one or more subjects

• a subject may belong to one or more groups of subjects

Semantic relationships describe the relationships mainly between but also
inside the aspects of the model:

• an activity is driven by the motive

• the object manipulated by an activity (embedded into the corre-
sponding motive)

• an action is driven by its goals

• goals may support or contradict other goals. This can be used
to model subgoals of an action or dependencies between the goals of
different actions

• actions and operations are constrainted by the conditions deter-
mined by the enclosing activity or action, respectively

• an action or an operation may be performed by either a subject or
a role element

• a role is determined by the set of skills necessary to take it

• a subject has a certain set of skills

• a role can be taken by a subject (depending on the match of neces-
sary and existing skills)

• an action or an operation may need a certain set of skills to be ac-
complished

• rules are derived from the motive of an activity

• activities are causally put into relationship using the follows connec-
tion

• operations are causally put into relationship using the follows con-
nection

• an operation may need some knowledge or a tool to be performed

• material may be required, altered or created by an operation or
an action

36 CHAPTER 4. STRUCTURED REFINEMENT OF CONTENT TYPES

• material may be composed of other parts which are also repre-
sented as material

The conceptual model in detail consists of the elements and (organising) as-
pects given in Figure 4.3 and 4.4.

4.1.1 Check against other Reference Models

While Activity Theory allows the derivation of the conceptual model given above,
the notions used (taken from activity theory) largely differ from those used in es-
tablished reference models for work process design. Thus, the developed model
has been checked against different reference models in this field (which basi-
cally spans the areas of process, workflow and task modeling) and try to map
the elements given there to the elements of the conceptual model. Three refer-
ence models from different points of view on business information systems have
been selected (see Figure 4.5):

• the WfMC Reference Model for workflow modeling [Wor95] (covering the
IT perspective)

• the Task Modeling Meta Model of van Welie for task modeling [vW01]
(covering the human perspective)

• the Process Modeling Comparison Framework of Soderstrom et al. for pro-
cess modeling [SAJ+02] (covering the organisational, economic perspec-
tive)

The meta-model level of the conceptual model is used to classify the elements
of the selected reference models. Each reference model is then compared to the
conceptual model on element level for each aspect. Consequently, the elements
of the selected reference models are considered to reside on model level in the
context of this comparison - even when they are abstracted from actual model-
ing approaches and originally are designed for explanatory purposes only. This
reinterpretation is valid, as comparison is performed on conceptual level and not
by using actual instances of processes. The selected reference models abstract
from actual approaches for modeling. Thus, they are better suited for a compre-
hensive check of the conceptual models's coverage of necessary elements.

4.1. PROCESS 37

Figure 4.4: Conceptual framework for procedural content - A detailed view on
model elements

38 CHAPTER 4. STRUCTURED REFINEMENT OF CONTENT TYPES

Figure 4.5: Modeling approaches for relevant aspects of business information
systems

The WfMC Reference Model

The Workflow Management Coalition has developed the WfMC Reference Model
[Wor95] as a framework for workflow systems. It is designed to support the
development of workflow management systems by specifying concepts, termi-
nology and general structure. Focusing on concepts, workflows represent the
execution aspect of an process (often also IT-centered, considering the user to
be a means for data-input and manipulation). The WfMC Reference Model (see
figure 4.6) is a widely accepted frame of reference for workflow modeling lan-
guages and thus is considered in this context.

Figure 4.6: WFMC Basic Process Definition Meta-model (taken from [Wor95])

4.1. PROCESS 39

The concepts of the WfMC Reference Model are mapped to those of the con-
ceptual model in table 4.1.

Table 4.1: Mapping of the WfMC Reference Model to the Conceptual Model

WfMC Reference Model Conceptual Model

Workflow Type Definition Activity

Activity Action (without considering the WHY-
Aspect), Operation

Role Role

Transition Conditions Conditions

Workflow Relevant Data Material (restricted to materials con-
taining data)

Invoked Application Tool (restricted to computer applica-
tions)

Models based on the WMfC reference model can be fully represented using
the conceptual framework proposed in this work. While some elements can be
mapped directly (like roles or conditions), others require additional restriction
of their counterpart in the conceptual model (like tools, which have to be re-
stricted to computer applications, as the WfMC model only considers those).

However, a comprehensive mapping is not possible the other way round.
The WfMC reference model especially lacks possibilities to represent the WHY-
aspect (which is hardly relevant for pure execution of a workflow). Other aspects
are not fully covered in detail. The USING WHAT aspect lacks knowledge and
skills and thus elements used to represent the human facet. This is rooted in the
IT-background of the WfMC-model. The idea of abstracting processes from exe-
cuting persons has impact on the elements of the WHO aspect, where the WfMC
reference model does not provide any means to represent persons but only en-
ables specification of abstract roles. It also does not provide any means to model
the NORMATIVE aspect.

Recapitulating, the WfMC reference model does not uncover any shortcom-
ings of the conceptual model proposed in this work. Models based on the WfMC
reference model can be fully represented in the conceptual model.

40 CHAPTER 4. STRUCTURED REFINEMENT OF CONTENT TYPES

Task Modeling Meta Model

The reference model of van Welie [vW01] (see figure 4.7) is a representative for
the wide field of task modeling languages (see figure 4.7). Task modeling lan-
guages historically focus on the boundary between human action and IT support
(from a user's point of view) und thus are often used for the design of interactive
systems.

Figure 4.7: Meta Model for Task Modeling (adapted from [vW01])

The elements of the task modeling meta model are mapped to those of the
conceptual model as follows. The mapping of relationships is described in table
4.2.

Again, the elements of this reference model can be fully mapped to the con-
ceptual model. However, it lacks the layer of concrete operations (i.e. it only
specifies what to do, but not how to do it). For task modeling, this is of no inter-
est, because tasks and operations are often not confined or distinguished in this
area (e.g. very detailed specifications of tasks on operational level are given in
[MPS02]).

The associations defined in van Welie's approach can be mapped to those
of the conceptual framework directly in most cases. However, there are some

4.1. PROCESS 41

Table 4.2: Mapping of the Task Modeling Meta Model to the Conceptual Model

Task Modeling Meta
Model

Conceptual Model

Task Action

Event Condition

Goal Goal

Goal Goal

Object Material, Tool

Agent Subject

Role Role

definitions that require special attention:

subgoal can be represented by the supports/contradicts relationship. While
on the one hand this is more fine grain, the explicit information of being
a subgoal is lost and can only be reconstructed implicitly in the context of
the action's other goals or the goals of possible subactions.

is responsible (between task and role) is the reverse relationship of 'performs'.
It is not available in the conceptual model because relationships with a car-
dinality other then m:n are implicitly reflexive in the conceptual model (in
contrast to m:n relationships like between actions and operations, where
both directions are modeled separately)

subrole cannot be represented in the conceptual model as it could not have
been justified against activity theory

influence (between roles) influencing always involves a conversational action
and has to be represented using this element for reasons of consistency

used by (between object and role) can only be represented by a mediating oper-
ation, as using something always includes someone who 'uses'. For reasons
of consistency, an operation as part of a producing action as to be used.

The only shortcoming of the conceptual model against the task modeling
meta model of van Welie is the lack of hierarchical relationships between roles.

42 CHAPTER 4. STRUCTURED REFINEMENT OF CONTENT TYPES

Wether this kind of relationship is really necessary will be evaluated in practical
evaluation scenarios. For now, it has not been considered, because no justifica-
tion in activity theory or its applications has been found (although it seems not
to contradict activity theory per se).

Recapitulating, the task modeling meta model matches the conceptual model
to a large extent (presumably because they both have their foundations in a
human-centred view of work processes). However, the task modeling meta model
lacks the HOW aspect of work models and thus does not allow explicit distinc-
tion between the WHAT and HOW aspects. It also does not provide any means
to model the NORMATIVE aspect.

Process Modeling Comparison Framework

The process modeling comparison framework developed by Soderstrom et al.
[SAJ+02] covers the research area of process modeling (see Figure 4.8) in this
comparison. No existing modeling language actually provides such a compre-
hensive feature set as the comparison framework. It seems to be appropriate for
reflection on the conceptual model, because it is based on and has been checked
against the established modelling languages Event-driven Process Chains, UML
State Diagrams and Business Modeling Language (similar to SDL) - references
to these approaches are given in [SAJ+02]). Each of these languages represents
a different approach to process modeling (activity-oriented, state-oriented and
communication-oriented). By unifying them, the comparison framework cre-
ates a comprehensive picture of this research area.

Approaches in process modeling in most cases take an organisational, eco-
nomic perspective when modeling work. The elements of the conceptual frame-
works also cover this perspective to a large amount (see table 4.3).

The process modeling comparison framework provides more modeling el-
ements than the conceptual model. However, the expressiveness of the com-
parison framework is significantly higher only in one aspect. The conceptual
model does not cover the WHERE aspect, while the process modeling compar-
ison framework offers the 'location' element to express where an event takes
place.

The process modeling comparison framework just like the conceptual model
explicitly specifies aspects of modeling (like WHO, HOW, etc.). Some of the ele-
ments are assigned to different aspects in the two models and the aspects them-

4.1. PROCESS 43

Figure 4.8: Meta Model for Process Modeling (taken from [SAJ+02])

44 CHAPTER 4. STRUCTURED REFINEMENT OF CONTENT TYPES

Table 4.3: Mapping of the Process Modeling Comparison Framework to the Con-
ceptual Model

Process Modeling Com-
parison Framework

Conceptual Model

Role Role

Actor Subject

Goal Goal

State -

Information Material (only intangible)

Resource Material

4M Material (unknown subtype)

Activity Action

Process Activity

Event Condition

Activity Dependency Condition

Rule Rule

Temporal Dependency Association 'follows'

Time Point -

Location -

4.1. PROCESS 45

selves are partially interpreted differently. This is especially true for the WHAT
and HOW aspect. All elements representing something people do or perform are
included in the HOW aspect in the comparison framework. The WHAT aspect
in the comparison framework corresponds to the USING WHAT aspect in the
conceptual model. While the respective elements basically match completely,
the comparison framework does not explicitly distinguish between the concep-
tual model's WHAT and HOW aspects. The WHEN aspect is also interpreted
differently. In the conceptual model, WHEN aims at representing causality and
temporal relationships. In the comparison framework, causal and temporal re-
lationships are included in the HOW aspect. The WHEN aspect there is used
to define some point in time (to model special kinds of temporal events). This
capability is not included in the the conceptual model. Temporal information is
specified in rules there when necessary (avoiding redundancy).

The process modeling comparison framework is lacking elements to repre-
sent operations and tools. This is not surprising, as these elements are relevant
for execution only, which is in the scope of workflow modeling and rarely is con-
sidered in the more abstract process modeling domain.

Recapitulating, the process modeling comparison framework offers a com-
prehensive set of elements when compared to the conceptual model. While the
comparison framework even goes beyond the expressiveness of the conceptual
model in some aspects, it lacks the capability to represent classic workflow ele-
ments like operations and tools.

4.1.2 Summary

In this section, a conceptual model for work processes has been developed based
on Activity Theory. The model has been checked against established reference
models to identify semantical equivalences between the elements of the different
approaches. Besides some reality check, this results in more extensively defined
elements in the conceptual model (by linking to existing concepts in other ap-
proaches).

Reviewing work process modeling in information systems research, Green
and Rosemann [GR00] derive the following aspects a model of a work process
has to contain:

• A representation of control flow

46 CHAPTER 4. STRUCTURED REFINEMENT OF CONTENT TYPES

• Information about the organisational units that are involved in the process

• The objectives and results (output) of the process

• Information about resources and knowledge used in the process

• References to descriptions of existing functions within an enterprise

These aspects can be summarized in the question 'who does what how and when,
using which ressources and why?'. They also correspond to the aspects defined
in the conceptual model (except 'references to descriptions of existing functions',
which can be realized by attaching additional, natural language information to
the 'group of subjects'-element). There is no explicit demand to be able to model
rules. However, rules can be considered to be implicitly contained in the other
aspects, as rules might affect them. Green and Rosemann do not specify a ref-
erence framework but only give guiding suggestions on how to model work and
do not claim formal completeness of their aspects.

In contrast to established approaches, the model presented here does not de-
termine the set of elements the modeler has to use. The elements defined in the
conceptual model may serve as a basic set of constructs to be used for modeling
(their designation, however, has to be adapted to the modeler's vocabulary). In
addition, it allows the introduction of arbitrary elements to explain the individ-
ual view onto a work process. Modelers are not forced to adapt and map their
view of their working environment to a different one for external representation.
Having said this, it is obvious, that the resulting model will not be deterministic
[FHL+98], i.e. will allow to build semantically equivalent model instances - dif-
ferent instances that represent the same phenomenon of reality. The conceptual
model in this context is used to represent the user-defined elements in order to
get to a common foundational model.

4.2 Content

The contents of this section are based upon the works of Auinger and Stary
on content engineering for didactically motivated knowledge transfer ([AS05b],
[AS05a]). The concepts discussed here have been implemented in the eLearning-
platform Scholion, which will be complemented with this work.

4.2. CONTENT 47

Following Auinger and Stary's approach, learning content is divided into small
content blocks. The division criterion is the didactic intention of a content part
(which can be assembled of text, images and other multimedia elements). The
following block types have been considered relevant in eLearning settings [AS05b]:

• Motivation

• Definition

• Example

• Case Study

• Code

• Exercise

• Reference

• Theorem

• Overview

• Directive

• Supplement

• Test

• Interaction

• Summary

• Generic Content

Every content block is assigned a specific block type augmenting it with ad-
ditional semantics. Several applications, from consistent didactically motivated
authoring of content to filtering content while learning, can be built upon this
concepts.

Blocks are assembled to learning units. Learning units are self-contained
regarding content and didactics. They present one topic, where the granularity
of topics should be equivalent to a presentation of content in 15 to 45 minutes.

Courses are an assembly of learning units to produce a comprehensive pre-
sentation of a certain topic area, where granularity is equivalent to that of course
in traditional, lecture-based settings.

On block level, the presented concept introduces three levels of detail. Every
block can be specified on different levels of detail (LOD). These LODs facilitate
different learning depths:

LOD 1 presents content in keywords (like on slides)

LOD 2 presents content in full text (like in lecture scripts)

LOD 3 provides additional (background) information or further reading to the
respective content

48 CHAPTER 4. STRUCTURED REFINEMENT OF CONTENT TYPES

In terms of individualisation, Scholion provides users with the concept of
views. Views can be interpreted as an individual overlay of the learning content,
on which learners can mark parts, annotate and add links to external or internal
ressources.

Figure 4.9 shows the relationships between learning units, blocks and levels
of detail. A single block may be used in several learning units. Blocks may also
be nested in each other within a learning unit, so that hierarchical structures can
be created.

Figure 4.9: Conceptual Content Framework

4.3 Communication

Support for communication is also based upon the concepts applied by Auinger
and Stary ([AS05b], [AS05a]) in the development of the eLearning-platform

4.4. META-DATA 49

Scholion. They identify three basic types of communication in an eLearning-
setting:

asynchronous, unidirectional implemented in the infoboard, which is struc-
tured like a bulletin board, on which teachers publish information for stu-
dents

asynchronous, bidirectional implemented using a forum for discussion among
both, students and teacher

synchronous, bidirectional implemented as a chat, which allows real time
communication among students and teachers.

Infoboard, forums and chats are attached to a course (as defined in the con-
tent section). Forums are structured using topics, on which discussions can be
opened. Chats contain chatrooms for structuring along discussion topics. Dis-
cussion entries and chat entries are ordered temporally. The Infoboard (and its
entries), chatrooms, discussions and discussion topics are not ordered.

Figure 4.10 shows the communication model structure used in this work.
Discussion entries can be nested to realize a hierarchical structure of questions
and answers in a discussion.

4.4 Meta-Data

The following structural meta-data is stored with every element of the models
given above:

• Author / Owner

• Creation Date

• Date of last change

4.5 Inter-model Aspects

Until now, the three areas of content (process, content, communication) have
been presented and analysed separately. These three areas have to be intercon-
nected semantically to facilitate OL.

50 CHAPTER 4. STRUCTURED REFINEMENT OF CONTENT TYPES

Figure 4.10: Conceptual Communication Framework

4.5. INTER-MODEL ASPECTS 51

The concept of intertwining content and communication has already been
applied in the development of Scholion. For example, it is possible to link parts
of the content to discussions or chats (and vice versa).

In this work, the process dimension is intertwined with content and commu-
nication. Thus, it is possible to:

• link specification or background material to work process models

• discuss about work processes (synchronously and asynchronously)

• put content into the context of work processes, in which it is considered
relevant

Besides that, the approach allows individual specification of arbitrary rela-
tionships (with freely definable semantics). Users in this way can express indi-
vidually perceived relations by establishing links between elements (of process,
learning and communication).

4.5.1 Extensibility

Extensibility is relevant to this work in two cases. The first - and more generic -
case is extension by additional content types (like the already defined process,
content and communication). This is necessary whenever the OL platform is
extended with new features that require the incorporation of a new information
aspect.

The second extension point is inside already existing content types. This is on
the one hand relevant for communication, where new communication channels
can be established with this means. On the other hand - and more important for
OL - domain specific extension of the models in content and process area is also
possible. By this means, users are enabled to introduce (and define) concepts of
their organisational domain or their very own mental model. As already stated
in the first part of this work, this is considered a very relevant feature to bridge
the gap between individual and organisational learning. In this area, recent work
on formalisation of flexibility in (work) process modeling is presented in [RR06]
(conceptually) and in [MRRvdA06] (applied to C-EPCs).

52 CHAPTER 4. STRUCTURED REFINEMENT OF CONTENT TYPES

Chapter 4: Summary

In this chapter, the content types relevant for OL have been put
into mutual context with the requirements on content representation
in Scholion. The resulting models allow to represent content of the
specified types in a structured, block-oriented form. Decomposition of
content follows different criteria for each content type. The resulting
elements of content are either semantically motivated (for learning
content), purely hierarchical and causal (for discussion content) or
both (for description of behaviour in procedural content). Considering
these results, a concept of data representation is needed, which allows
to express content of arbitrary type and structure in a consistent form.

Chapter 5

Data Representation Concepts

Now that we have all this useful information, it
would be nice to be able to do something with it.
(Actually, it can be emotionally fulfilling just to get
information. This is usually only true, however, if
you have the social life of a kumquat.)

UNIX Programmer's Manual

Objectives of Chapter 5

The goal of this chapter is to select and describe a suitable con-
cept for representation of content. The selection is triggered by
the requirements identified in part I. A detailed description of the
concept is necessary to allow mapping of content elements to actual
representation

The concept for content representation is developed in the following based
upon the requirements identified in the first part. Recapitulating, the require-
ments of OL research on learning content representation are:

• representation of different content types

• storing a single content element in different, arbitrary forms of represen-
tation

• adding individual information and remarks to content

53

54 CHAPTER 5. DATA REPRESENTATION CONCEPTS

• putting content elements into arbitrary relationship with each other

• attaching structural and domain-specific meta-data to content elements

In addition, the concepts of Scholion required to find a form of representation
that provides:

• arbitrarily definable blocks of content

• arbitrarily definable associations of blocks of any type

• arbitrarily definable forms of representation of content blocks

Brought down to a more technical view on data representation, this means
that the selected concept:

1. must not rely upon fixed data models but has to allow description of these
as part of the representation

2. must allow to build semantically linked structures of elements (in other
terms: conceptual graphs [Sow84] [Sow00])

3. must allow arbitrary representation of the actual content and even several
distinct and/or complementing representations for the same element

The only concept, that meets all three requirements in a consistent form is
that of Topic Maps [ISO06a]. Topic Maps are a means to represent semantic
networks (meeting requirement 2), where actual semantics of both content el-
ements and relationships are arbitrary but explicitly definable within the topic
map (meeting requirement 1). Topic Maps also allow to attach arbitrary (even
multiple) representations of content elements again with arbitrary but definable
semantics (meeting requirement 3).

A second candidate for data representation is using a combination of the se-
mantic web standards RDF and OWL [W3C06]. With these technologies, the
three requirements given above can also be met. RDF/OWL however follows
a distributed approach for expressing semantics by attaching semantic meta-
data to the actual content representation. In contrast to topic maps, no explicit
representation of the content structure is available but has to be derived from
content-meta data. Topic Maps - following a centralized approach to expression
of semantics - better suit this work, where focus is on structure of content.

5.1. TOPIC MAPS 55

RDF/OWL explicitly focus on representing ontologies, an area which is not
covered by the topic map standard. However, topic maps can be used to rep-
resent ontologies because of their generic approach to data representation. In
order to do so, topic map constructs for building ontologies have to defined by
the system designer - topic maps do not provide any themselves. The constructs
used for ontology description are described in section 8.1. They have been in-
spired by those introduced by RDF/OWL.

Both approaches are briefly presented in the following. However, focus is on
topic maps, because they will be used for data representation. RDF and OWL
are reviewed in terms of complementing or conflicting concepts - especially for
representation of ontologies. A brief overview about recent research in the area
of intertwining Topic Maps and RDF/OWL points out possible approaches for
complementary usage.

5.1 Topic Maps

Topic Maps are a standardized means to represent semantic networks and as-
sociating the contained concepts with information ressources. Their expressive
power corresponds to those of conceptual graphs and goes beyond by incorpo-
rating the expressiveness of indices. The index concept enables to link concepts
to instances, i.e. representations of corresponding information [Pep00].

Topic Maps per definition are 'ontology-agnostic', i.e. they are capable of
representing any kind of information in any context (or: to express anything
about anything whatsoever [Vat04]). Therefore, they are an ideal means of
representation in this work, where it is necessary to express content structures
(instances), models, meta-models and also links to the actual information rep-
resentations.

Topic Maps and the corresponding XML representation format XTM [Top01]
have been standardized by ISO [ISO02] in 2002. This work is based on the re-
vised version of the standard (v2.0), which has been approved in the beginning
of 2007. The new version of the Topic Map Standard consists of multiple parts,
of which the most relevant are the Topic Map Data Model (TMDM) [ISO06a], a
formal meta model for topic maps, and the corresponding XML representation
format XTM 2.0 [ISO06b].

Topic Maps consist of several building blocks, which can be used to model

56 CHAPTER 5. DATA REPRESENTATION CONCEPTS

concepts, the relationships among them and the links to actual instances of con-
cepts. These building blocks are reviewed in annex B, including a reflection of
how they will be used in the context of this work. A topic map basically con-
sists of topics, associations (see figure 5.1) and occurrences (as the bridge to the
'outer world'), which are intertwined as described in annex B (also see figure
5.2. Regarding terminology, topics correspond to concepts, associations repre-
sent relationships and occurrences map to instances.

Figure 5.1: Topic Maps - Basic Elements (taken from [ISO06a])

Figure 5.2: Topic Maps - Structural Overview

5.2. RDF & OWL 57

5.2 RDF & OWL - Competitior or Complement

Another approach to semantic augmentation of information ressources is RDF/OWL.
RDF and OWL have been standardized by the W3C [W3C06] in the course of the
Semantic Web Initiative and aim at fulfilling similar purposes as topic maps with
a rather different approach.

5.2.1 RDF & OWL Overview

RDF s short for for Ressource Description Framework and has been designed as
language for representing information about resources in the World Wide Web.
It is particularly intended for representing metadata about Web resources [...].
However, by generalizing the concept of a 'Web resource', RDF can also be used
to represent information about things that can be identified on the Web, even
when they cannot be directly retrieved on the Web [W3C04b].

In contrast to topic maps, RDF basically starts bottom up at the occurrences
(here: web resources) and describes (a) the semantic type (basically similar to
topic types) of a resource (e.g. an resource describing a 'Person') and (b) meta
information (basically similar to topics and associations) of a resource (e.g. the
person described in the resource is 'Mr. X' and can be reached under 'mrx@foo.com').
However, RDF lacks the capabilities necessary to specify an ontology (in terms of
concepts and associations). A first step towards ontology specification is RDF-S
(RDF Schema) which is a vocabulary for describing properties and classes of
RDF resources, with a semantics for generalization-hierarchies of such prop-
erties and classes [W3C04a].

However, to provide full ontology support, OWL has been introduced. OWL
is an acronym for Web Ontology Language and is builds on top of RDF to pro-
vide full ontology support. OWL can be used to explicitly represent the meaning
of terms in vocabularies and the relationships between those terms. This rep-
resentation of terms and their interrelationships is called an ontology. OWL
has more facilities for expressing meaning and semantics than XML, RDF, and
RDF-S, and thus OWL goes beyond these languages in its ability to represent
machine interpretable content on the Web [W3C04a]. OWL provides full sup-
port to model and formally represent ontologies, that is, modeling concepts, as-
sociations and explicit formulation of rules and constraints for usage of ontology
concepts (which is not explicitly possible when using topic maps).

58 CHAPTER 5. DATA REPRESENTATION CONCEPTS

5.2.2 Towards integration with Topic Maps

The first approach to represent Topic Maps using RDF constructs has been made
by Ontopia [Ont03] in 2003 but has been abandoned shortly afterwards as RDF
had proven to provide too little expressiveness to fully represent Topic Maps.
This lack of expressiveness has been overcome by the introduction of OWL.

In [Vat04], Vatant has shown how OWL can be used to replicate the topic
map constructs and represent topic maps. He claims this to enable the intro-
duction of ontologies into the topic map world (which - as mentioned above -
are considered 'ontology-agnostic'). He also argues for compliance with the es-
tablished and widely adopted OWL-standard for modeling ontologies:

In fact topic maps would indeed gain effectiveness and interoperability ei-
ther through explicit formalization of ontologies specifically built and dedi-
cated for topic map control, or through declaration of commitment to pre-
defined ontologies, not specifically designed for that use. In either case, using
OWL ontologies should be considered as the most interesting choice.[Vat04]

More recently, Cregan [Cre05] has proposed a comprehensive model of topic
map representation in OWL. Using OWL for building ontologies also overcomes
the described drawback of being not able to define constraints on topic types (e.g.
usage of a type solely with a specific association role or an occurrence). OWL
includes the concepts of restrictions, and so enables constraining association
roles and occurrences in the intended way.

Topic Map instances are defined in a meta model specified in OWL. The top-
ics (actually only those topics which are directly associated with at least one oc-
currence) and associations among them are represented using RDF (based upon
the OWL ontology). However, this mapping puts down the flexibility of topic
maps. It is not possible any more to recursively step up and down modeling
levels to extend and refine the (meta) model. This problem is also adressed in
[Cre05] as the major drawback of using OWL for topic map representation - Cre-
gan suggests a possible solution which cannot be automatically processed using
OWL engines (in contrast to a pure topic map solution). Nevertheless, it seems
to be possible to translate a stable topic map (including its meta model) into an
RDF/OWL-assembly, being able to provide compliance to the most widespread
standard for semantic augmentation on the web (while the same is true the other
way round, RDF/OWL-constructs can also be represented in topic maps, as men-
tioned in [Rat03] and implemented in the Ontopia Omnigator [Ont06]).

5.2. RDF & OWL 59

An comprehensive overview and comparison of topic maps and OWL is also
available in [Raf05].

Chapter 5: Summary

Topic Maps have been identified as a suitable means for content
representation based upon the requirements identified in part I.
Topic Maps are open to every form and structure of content. They
provide means to explicitly define content models including available
elements, associations and forms of content representation. They are
an ideal candidate to realize flexibility in content representation for
OL. For actual use in this work, models for the specified content types
are needed. The topic map concepts will be used to represent these
models. This is subject of the following part.

60 CHAPTER 5. DATA REPRESENTATION CONCEPTS

Part III

System Design &
Implementation

61

Chapter 6

System Design Overview

The primary purpose of the DATA statement is to
give names to constants; instead of referring to
pi as 3.141592653589793 at every appearance, the
variable PI can be given that value with a DATA
statement and used instead of the longer form of the
constant. This also simplifies modifying the pro-
gram, should the value of pi change.

FORTRAN manual for Xerox Computers

Objectives of Chapter 6

The main goal of this chapter is to create a high level software design
based on the results described in the former parts. In addition, the
technical constraints on implementation for Scholion-integration are
identified. The results given here provide the context for the detailed
design and implementation described in the following chapters.

Figure 6.1 gives an overview of the software system architecture. The central
part of the system is the topic map engine (cf. chapter 7). It has been imple-
mented based upon the specification of ISO Topic Maps as described in annex
B. An interface has been introduces for flexibility of persistent topic map stor-
age. This interface has been implemented for XTM and relational databases via
Hibernate (cf. section 7.1).

On top of the generic topic map engine, an OL layer has been implemented
(cf. chapter 8). It contains the models defined in chapter 4 and provides access-

63

64 CHAPTER 6. OVERVIEW

routines for easier management of OL content (making the topic map represen-
tation invisible for users).

The peripheral components, the Scholion Data Importer (cf. section 8.3) and
the Integration into the Scholion platform have been designed conceptually so
far and are only implemented prototypically in the course of this work.

Figure 6.1: Architectural Overview

6.1 Technical Constraints for Scholion-Integration

Some fundamental design and implementation decisions have to be made be-
fore going into detailed system design. The existing IT infrastructure within and
around the Scholion plattform sets some constraints on system design:

6.1. TECHNICAL CONSTRAINTS FOR SCHOLION-INTEGRATION 65

Java The use of Java as the language for implementation is a requirement on
all software systems integrated with Scholion. Consistent usage of pro-
gramming languages makes maintenance easier and allows extension and
debugging of the software by dedicated project members or students.

Encapsulated Data Representation While the work presented here aims at
substituting the current data management layer of Scholion, for now it is
considered an extension, that provides additional features. As this work
works with rather low-level data manipulation routines, it is crucial that
- in the prototyping stage - data representation between the software sys-
tem of this work and Scholion is strictly encapsulated. Furthermore, data
encapsulation is also a general requirement on new extensions developed
for Scholion.

Hibernate Integration Scholion's data representation is based upon a RDBMS
(relational database management system). Hibernate [Red07] is used for
all extensions to map Java objects to data base entries. In this way, a con-
sistent, yet flexible data management layer is provided.

Transfer of existing Scholion content The capability to import existing con-
tent (both, learning content and communication data) from the already
available data sources of Scholion is necessary to allow a smooth transi-
tion to the new, topic map based data management layer.

XML Data Export Scholion content can be rendered to XML (based on stan-
dard learning content formats) to provide a means for easy content ex-
change between instances of Scholion or even other platforms. As Topic
Maps provide a standardized format for XML representation (XTM), this
format is used to export content to XML.

66 CHAPTER 6. OVERVIEW

Chapter 6: Summary

This chapter gives an overview of the software system's design.
It sets the frame of reference for the software components presented
in the following chapters. Besides that, the technical requirements for
integration into the Scholion Platform are specified. These require-
ments directly affect system design and have to be considered during
implementation of the components.

Chapter 7

Topic Map Engine

A man from a primitive culture who sees an auto-
mobile might guess that it was powered by the wind
or by an antelope hidden under the car, but when he
opens up the hood and sees the engine he immedi-
ately realizes that it was designed.

Michael J. Behe in 'Molecular Machines: Experimental Support
for the Design Inference'

Objectives of Chapter 7

In this chapter the implementation of the topic map data model
(presented in annex B) is described and complemented with routines
to create, manage and access a topic map. The engine allows to map
the content models defined in the former part onto topic maps. Besides
that, approaches to store and retrieve topic maps to and from different
data formats are developed. The latter is necessary for integration into
the Scholion data management concept.

The Topic Map Engine implemented in this work complies to the ISO Topic
Map Data Model [ISO06a]. Figure 7.1 shows the classes, which have been cre-
ated to represent the elements of a topic map. This structure exactly maps to
that given in the topic map data model (cf. annex B), except the introduction
of an explicit representation of scopes. The Scope-class has been introduced for
more convenient management of scopes. It allows to not only to retrieve the top-
ics that constitute the scope but in addition the statements which are contained

67

68 CHAPTER 7. TOPIC MAP ENGINE

in the scope (which would otherwise only be possible by iterating through all
statements).

Figure 7.1 also shows the Manager-class and the Utils-class. The Utils-class
only contains routines for internal management of the engine. The Manager-
class provides a unified interface to the topic map engine. Although all topic-
map-constructs can also be created manually, using the Manager-class assures
consistency of the topic map. Manager keeps track of topics used as types (for
other topics, associations, occurrences, etc.) and scopes. It also allows more effi-
cient management of a topic map by providing routines for convenient topic map
construct manipulation. Using the Manager-class, a topic map can be created
more easily and understandable (for details of usage see annex C). Every topic
map is managed by an instance of the Manager-class, which allows to conve-
niently administer several topic maps.

Figure 7.2 shows the classes of the topic map engine in more detail. The
attributes and associations given there show that the implemented structure is
equivalent to that of the topic map data model given in section B (both figures
are generated directly from source code).

The topic map engine in a means of topic map representation in Java ob-
jects. When working with topic maps, it is crucial to provide means of persisting
and retrieving them from storage. A basic design requirement was to allow for
arbitrary persistence technology to allow attaching the system to various data
sources and sinks. The implementation of the persistency interface and two of
its implementations are described in the following section.

7.1 Persistency

Topic map persistency using arbitrary technology is a necessary requirement for
interoperability. An interface has been introduced to remain flexible. It has to be
implemented for each persistency technology. The interface provides methods
for both import and export of topic maps. In the course of this work, two codecs
using the interface have been implemented in student projects:

XTM 2.0 XTM 2.0 is a standardized XML dialect [ISO06b] for storage of topic
maps. As XTM is the only standardized means of topic map data exchange,
this codec is necessary to enable usage of the engine's representations with
third party applications, editors and/or visualizers.

7.1. PERSISTENCY 69

Figure 7.1: Topic Map Engine - Class Hierarchy Overview

Hibernate Hibernate [Red07] is an open-source framework for mapping of
(Java-)objects to relational databases. Hibernate is already used in Scho-
lion development and therefore has been chosen as a means of topic map
persistency. Using Hibernate to store and retrieve topic maps enables seam-
less integration into Scholion's data management logic and allows to use
an arbitrary RDBMS for topic map persistency.

Both implementations store topic maps represented within the engine and load
them from storage (with subsequent recreation of the internal structure the en-
gine uses for management). The implementations have been tested and work
as expected (i.e. they produce valid XTM files and Schema-compliant data base
entries, which contain every information represented in the original topic map).

70 CHAPTER 7. TOPIC MAP ENGINE

The persistency interface is also used to output topic maps graphically us-
ing the GraphViz graph layouting toolset [GN00]. An encoder to GraphViz's
dot-format has been developed for straight-forward and flexible visualisation of
topic map contents. This component has been used for implementation of the
visualization application described in chapter 9. A decoder from dot-format to
topic maps can not be implemented because the dot-format does not represent
all information necessary to reconstruct the whole topic map.

Chapter 7: Summary

In this chapter, the fundamental software component of this work -
the topic map engine - has been described. The topic-map-engine is
the foundation for all software components described in the following
chapters. It especially allows to technically represent the OL content
models already presented.

7.1. PERSISTENCY 71

Figure 7.2: Topic Map Engine - Class Property & Association Overview

72 CHAPTER 7. TOPIC MAP ENGINE

Chapter 8

Representation of OL Content

To boldly go where no man has gone before ...

from Star Trek - Intro

Objectives of Chapter 8

The goal of this chapter is to develop topic map representations
of the models described in chapter 4. The development of manage-
ment routines for these content models complements the basis for
flexible OL content representation and management. All examinations
are based upon the conceptual foundations of Scholion, in which the
results of this work are integrated.

This chapter describes how the existing implementation of Scholion WB+ can
be complemented by a topic map data layer and how Scholion can be extended
with descriptions of procedural content. The first part of this chapter covers the
concepts applied to express the models presented in chapter 4 to topic map con-
structs as described in annex B (and implemented as described in chapter 7). In
the second part, the routines to access and manage OL content are presented
- these routines make the topic map representation invisible for the user and
enable convenient access. In the last part, the data import from Scholion is de-
scribed. This module has only been implemented prototypically as it is out of
scope of this work.

73

74 CHAPTER 8. REPRESENTATION OF OL CONTENT

8.1 Mapping Content Models to Topic Maps

The OL Content Topic Map represents the models defined in chapter 4 in a se-
mantic network. It decomposes the model elements into topics and associations,
which are then used as topic types, association types, association role types or
occurrence types in topic maps representing concrete content. The OL Manage-
ment Layer (cf. section 8.2) uses the Content Topic Map to create and manage
Scholion OL Content. The implemented content models are described in detail
in annex D.

Means for Content Validity Checking

The OL Content Topic Map provides means of checking validity and soundness
of represented content. Explicit definition of valid associations and roles for
topic types enabled implementation of these features. The topic map standard
does not provide any means of expressing these constraints - it is not possible
to define validity rules fpr relationships between topics of a certain type, asso-
ciations, association roles or occurrences. While the draft standard of the Topic
Map Constraint Language [ISO05] is a candidate to close this gap, a different
approach has been chosen. The Topic Map Constraint Language is not yet fully
specified and has so far never been implemented - besides that, it introduces
a completely new language for representation, for which no parser is currently
available. The approach of this work is to express validity and soundness rules
by means of topics and associations themselves.

A Validity Meta Model has been introduced and is used to specify the valid
associations between concepts of the Scholion OL Content Topic Map (for an
example see figure 8.1). Is is composed of the following elements:

• a topic type AssocType, which is used to type topics as association types in
a concrete topic map

• a topic type TopicType, which is used to type topics as topic types in a con-
crete topic map

• a topic type AssocRoleType, which is used to type topics as association role
types in a concrete topic map

8.1. MAPPING CONTENT MODELS TO TOPIC MAPS 75

• an association type assocDef, which is used to type associations that define
valid combinations of association types and corresponding association role
types. Associations typed with assocDef are always n-ary and are attached
to the following topics:

– exactly one topic typed with AssocType in the role type (which conse-
quently only occurs once)

– an arbitrary number of topics typed with AssocRoleType in the role of
either card 1 or card n expressing the cardinality in which association
roles (and implicitly attached topics) occur in the defined association.

• an association type validRoleTopicCombination used to type associations
that define the valid combinations of association role types and topic types
(i.e. which type of topic can take which roles in a certain association). As-
sociations typed with validRoleTopicCombination are always binary and
are attached to the following topics:

– exactly one topic typed with AssocRoleType in the role assocRole

– exactly one topic typed with TopicType in the role topicType

These elements are used to define each element and association given in the con-
tent models (in chapter 4). Extensions of these models always include a mapping
to topic map representation by means of the Validity Meta Model.

Decoupling Content and exact Semantic Type

While the basic type of an element always remains constant, the actual mean-
ing depends on the context, in which this element is used. This requirement
was discovered in the course of translation from the content models to a topic
map representation. It showed up when designing the mapping of the learning
content model and was also found applicable to the process content model.

This led to a generic design decision: The basic type of an element is de-
scribed as a topic type amd the exact semantics are assigned through roles (e.g.
type: block - role: example, type: WHAT - role: action). In this way, the same
content can be used with different meaning in different contexts. For instance,
the block element in the learning content model can be semantically refined with

76 CHAPTER 8. REPRESENTATION OF OL CONTENT

the types given in section 4.2 (e.g. as an example or a definition). Another ex-
ample is the WHAT element of the process content model, which can be seman-
tically refined e.g. to action or operation - depending on the actual context.

Concrete Mapping

A mapping of existing concepts for Scholion learning content to Topic Map con-
structs and structures has been developed (cf. Figure 8.1) in the course of sev-
eral workshops with the Scholion development team. The validity meta model
and models of learning and communication content (as described above) also
resulted from these discussions.

Figure 8.1 shows the topic map representation of the content area. The same
concepts have been applied to the communication model and the process model.
Due to the rapidly rising complexity and size of the representation of larger mod-
els, both have not been visualized graphically but were implemented directly.

8.2 OL Management Layer

The OL management layer makes the topic map data representation invisible
for users. It encapsulates both Scholion OL concepts and manipulation routines
into comprehensible and easy-to-use classes and methods. In these classes, each
concept and manipulation is translated into corresponding topic map concepts
and operations, which are represented in and executed on the underlying topic
map.

The topic map itself not only contains the actual content but also the model
elements. So, every topic map is self contained from a data representation point-
of-view.

Manager-classes provide access to the topic map. They have been imple-
mented for every type of content and build a modular, layered structure, which
encapsulates data representation. The result is an easy to use and extend frame-
work for OL content representation (cf. Figure 8.2).

The managers provide the following functionality:

Topic Map Manager This manager encapsulates topic map details on the low-
est level of abstraction. It provides means to manage topic and association

8.2. OL MANAGEMENT LAYER 77

Figure 8.1: Representation of Scholion Content using TopicMap concepts

78 CHAPTER 8. REPRESENTATION OF OL CONTENT

Figure 8.2: Structure of OL Management Layer

types, to define topics (with or without specified types), associate topics (in
defined roles) and to manage scopes.

Content Model Manager The content model manager builds upon the topic
map manager and provides means to define and manage content models
for OL. It contains methods implementing the meta modeling concepts
presented in subsection 8.1. These concepts are used to specify the ele-
ments contained in a content model and the valid associations (including
roles). This manager class is the focal point for extension of the content
models and is used to define (a) new elements and/or (b) new associations.

Learning / Communication / Work Process Content Manager The ac-
tual content manager classes are implemented for each content type sup-
ported in the OL platform. They encapsulate the topic map representation
in an easy-to-use class interface. For every content element, a separate
class is provided. By instantiating these classes new content elements are
defined. Each element-class provides methods to establish links to related
elements without having to care about the actual topic map representation
(e.g. add blocks to a learning unit by calling lu.add(set of blocks)

8.3. SCHOLION DATA IMPORTER 79

and have the manager keep track of the necessary associations and scope
definitions)

Common Content Elements Manager The common content elements man-
ager contains means to manage both, elements that are used in each model
and associations that span across distinct content models. Examples of el-
ements that are used in every content model are Course (which is the basic
container element in Scholion) and Subject (which represents humans ei-
ther being users of the system, authors or even part of the content).

Every manager initialises itself by adding its elements to the topic map (in-
cluding the topics and associations needed for representation of the (meta-)model
it manages). In this way, every topic map contains all information necessary to
reconstruct and navigate through the underlying models, that build the founda-
tion for the represented content.

8.3 Scholion Data Importer

The Scholion Data Importer imports existing Scholion content into the topic
map based representation format. The importer handles both, learning content
and communication content (including infoboard, chat and forums). The Scho-
lion Data Importer enables smooth transition from the old to the new, extended
data management layer. It also facilitates parallel operation of both systems dur-
ing time of transition.

The Scholion Data Importer reads Scholion Content from the Scholion database
(cf. figure 6.1) and maps it to topic map representations (cf. section 8.2). It only
works one-way and is not able to transfer content structured in topic maps back
to the database representation (as the topic map representation model is a super-
set of the database schema in terms of relationships between content elements).

Chapter 8: Summary

In this chapter, the software modules necessary to complement
Scholion with a topic map-based content data model have been
developed. The results presented here can be considered a core result
of this work and build the foundation the following chapters.

80 CHAPTER 8. REPRESENTATION OF OL CONTENT

Part IV

Evaluation

81

Chapter 9

Content Structure Visualization
as Enabler for Testing

...when thinking about ontologies and semantic
web it is easy to focus on the requirements of pre-
cision and data integration to the exclusion of the
requirements for end user navigation

Dave Reynolds et al. in [RSCS04]

Objectives of Chapter 9

A sample application for navigation in OL content based on topic
maps is described in this chapter. One of the objectives in this work is
to show applicability of the developed concepts in actual application
scenarios. In addition, a means of structured testing of the software is
needed. The application developed here sets on top of the OL Content
Management Layer to meet these requirements. It visualizes content
structures by exploiting the semantic information represented in the
topic map.

The application presented here supports users to capture the context of a con-
tent element provided by Scholion. Several authors (e.g. [Bor04] or [CHKM05])
argue that learning in context has positive effects on successful knowledge trans-
fer. The context in this case is constituted by all elements that are directly as-
sociated with the element of question. The semantic relationships between the

83

84 CHAPTER 9. CONTENT STRUCTURE VISUALIZATION

elements are derived from the underlying topic map representation and are vi-
sualized using the GraphViz toolset [GN00] (see Figure 9.1).

Figure 9.1: Example of Content Structure Visualisation

The current implementation generates static graphical visualisations of an el-
ement's context. A set of navigable HTML-pages is generated using the GraphViz
toolset. This structure enables navigating through learning material by focusing
on one content element at a time and providing hyperlinks to the directly at-
tached elements. The focused element (in the center of figure 9.1) is augmented
with a link to the actual learning content (automatically generated from the re-
spective occurrences defined in the underlying topic map).

The visualiser currently is only a proof-of-concept prototype and suffers the
following limitations:

85

• Semantics of associations are not considered during rendering, all asso-
ciations are treated the same way (instead of e.g. marking type-instance-
relationships differently).

• Multiple occurrences (e.g. for LOD1, LOD2 and LOD3 in learning content)
are not handled, the focused element is always (and only) linked to the first
occurrence.

• The content models have not been made navigable, although content type
elements are displayed (as part of type-instance-relationships). Naviga-
tion is currently only possible on instance-level.

• Scopes are not considered during rendering, which leads to rather confus-
ing visualisations for complex scenarios (e.g. for block-elements, which
are included in several learning units).

However, the implemented application provides sufficient functionality to
serve as a foundation for the user-test (see section 10.2). The visualiser uses all
implemented components and in this way also serves as a testing instrument for
formal functional evaluation (see section 10.1).

Chapter 9: Summary

In this chapter, an application to visualize the context of a con-
tent element has been developed. The information necessary for
visualization is derived from the semantic data represented in the
topic map. The application is a pointer on possibilities to generate
added value for the user using the results of this work. Furthermore,
it serves as the showcase used for the evaluation described in chapter
10. This chapter contributes to objective 6a.

86 CHAPTER 9. CONTENT STRUCTURE VISUALIZATION

Chapter 10

Evaluation Design

I think we ought always to entertain our opin-
ions with some measure of doubt. I shouldn't wish
people dogmatically to believe any philosophy, not
even mine.

Bertrand Russell

Objectives of Chapter 10

This chapter contains descriptions of designing the tests and eval-
uations that are necessary to demonstrate the functionality and
usefulness of the software developed in this work. Every component
is tested formally, the overall system is evaluated in a user test. It is
necessary to define required properties of the test content and criteria
on which to judge the results.

Functional tests and user evaluation of the developed system are described in
this chapter. The implemented modules are tested using an exemplary content
structure defined in the following.

To test the central features of the software system on all layers (for details see
section 10.1) the following requirements have to be fulfilled by the test content:

• Use elements from at least two different content models

• Use elements from the common content model

87

88 CHAPTER 10. EVALUATION DESIGN

• Use model-internal content structures with at least to two links between at
least two different content elements

• Have actual content linked to the elements, where content visibility has to
be dependent on the scope (e.g. adding content to a block, which is only
valid in one of two learning units)

• Use cross-content-model associations between content elements

• Use at least one sub-roletype to associate elements (see subsection 8.1)

• For learning content: Have at least one block elements reused in two learningu-
nit elements

Designing test content following these requirements allows to test the topic
map engine, covers large parts of the OL semantic content model and enables
in-depth tests of the OL management layer. Furthermore, it is compatible with
the current functionality of the visualizer application. The following structure
has been developed to meet the given requirements:

• Course Textbased Datamanagement, containing two learningunits and a
forum:

– Learningunit XML Basics

– Learningunit XML Structuring

– Forum XML Discussions

• The learningunit XML Basics consists of the following blocks (all of the
type content):

– Introduction

– Basic Structure

– Structure Definition

∗ DTD

∗ Schema

• The learningunit XML Structuring consists of the following blocks:

– Structure Definition (same block element as in the first learning unit)

10.1. FORMAL TESTS 89

– DTD Example

• The forum XML Discussions contains a discussiontopic XML Specifics,
which holds a discussion about how to specify attributes

• All blocks have been added a link to actual content. This content was marked
to be LOD2 in the context of the learningunit XML Basics.

• The block Structure Definition has been linked to the discussion about how
to specify attributes

Based on this content structure, the functionality of the internal system com-
ponents is tested. A user evaluation to test practical usage of the system includes
(a) creating content structures and (b) using these structures for navigating (us-
ing the application presented in chapter 9).

10.1 Formal Tests

The formal tests described here show the correct internal operation of the de-
veloped system. In detail the following functionality is tested (affected modules
given in italic font):

• Correct representation of topic maps from both, a structural and content
point of view (Topic Map Engine)

• Correctly storing and retrieving topic maps to and from XTM and RDBMS
(via Hibernate) (Persistency Interface, XTM Codec, Hibernate Codec)

• Correct generation and association of OL content elements (OL Manage-
ment Layer, OL Content Models)

• Correct mapping of OL content elements to topic map constructs (OL Con-
tent Models)

• Correct visualization of content structures (Content Structure Visualizer)

The following tests have been designed to verify the areas given above (the
criteria to be met are given in italic font):

• Correct representation of topic map

90 CHAPTER 10. EVALUATION DESIGN

– Visualize complete topic map (exemplary content instance including
elements of all content models) and compare result to nominal struc-
ture
Visualized structure contains all topics, associations and roles that
have to be contained following the nominal content models and map-
pings to topic map structures given in chapter 4 and chapter 8

• Persistency (storing and retrieving topic maps)

– Store Topic Map in XTM File
XTM file has to be valid against the official XTM schema, all topic,
associations and occurrences have to be stored

– Retrieve Topic Map from XTM File
The restored topic map has to be equivalent to the original one

– Store Topic Map using Hibernate
All topics, associations and occurrences have to be stored

– Retrieve Topic Map using Hibernate
The restored topic map has to be equivalent to the original one

• Generation and association of content elements

– Generate a content instance for every implemented content model
Creation and intra-model association of content elements has to be
possible exactly for the combinations defined in the models given in
chapter 4

– Generate inter-model links between elements
Inter-model association of content elements has to be possible ex-
actly for the combinations defined in the models given in chapter 4

• Mapping of content elements to topic map representations

– Visualize complete topic map (exemplary content instance including
all content models) and context of all contained elements, compare
results to nominal structure
Visualized structure contains all topics, associations and roles that
have to be contained following the definition of the exemplary con-
tent

10.2. USER EVALUATION 91

• Visualization of content structures

– Visualize the context of all elements contained in the example content
structure
All elements and associations have to be visualized as defined

10.2 User Evaluation

The user evaluation described here examines the applicability of the developed
system in daily use scenarios. Focusing on applicability during design time, the
scenario of creating content structures is used for testing.

A person familiar with the creation of learning content in Scholion is given
the task to transfer the structure of some existing Scholion learning content to
the OL platform (creation of two full learning units and a forum (including some
discussions), which then are assembled to a course).

Chapter 10: Summary

This chapter defines the frame of reference for both, formal test-
ing and user evaluation and enables accomplishment of test and
structured verification of the results. The results of the tests and
evaluations defined here are given in chapter 11.

92 CHAPTER 10. EVALUATION DESIGN

Chapter 11

Evaluation & Results

1. If reproducibility may be a problem, conduct the
test only once.
2. If a straight line fit is required, obtain only two
data points.

Velilind's Laws of Experimentation

Objectives of Chapter 11

In this chapter, the tests and evaluations carried out with the de-
veloped software system and their results are described. The goal is to
find out, whether the system operates correctly and if it is of principle
use for users.

The formal tests and their results are presented in the first part of this chap-
ter. In the second part, the user evaluation and its result is reflected briefly.

11.1 Formal tests

Following the requirements and criteria defined in section 10.1, the test of the
overall software system and the contained components have been carried out.
The content structure defined in chapter 10 has been used for these tests. It
contains elements of all implemented content models and is designed in a way,
which covers all relevant functionalities and specifics of the underlying software
components. The results of the tests are described in the following:

93

94 CHAPTER 11. EVALUATION & RESULTS

Correct representation of topic map The complete topic map structure
was rendered to test the correct representation of the topic map data. The out-
put was then mapped to the structure defined by the content models and the test
content structures. Figure 11.1 shows the visualisation of the topic map, which
has been reflected (actually part by part, each model at a time) against the ex-
pected structures.

Figure 11.1: Visualisation of complete topic map structure

The mapping to the specified structures showed, that the topic map struc-
tures correctly represent content. Hence, the criteria are fulfilled for this test.

Persistency The exemplary content structure has been mapped to topic map
representation for this test. The topic map was then rendered using the XTM
and Hibernate Codec. Output worked as expected, the resulting XTM-file is valid

11.1. FORMAL TESTS 95

against the XTM Schema, the data structures in the relational database contain
all information of the topic map (actually a 1:1 mapping between tables and ob-
jects has been created). Input also works as expected, the topic map structures is
restored correctly (verified using a visualization as described above). However,
the routines to restore the content element structures are not fully operable in
the current implementation and were not tested in depth. Therefore, the crite-
ria of this test are partially fulfilled, lacking full verification of restoring content
structures from external sources.

Generation and association of content elements Test of content ele-
ment generation and association was conducted using the exemplary content
structure and some additional elements to cover all implemented features. The
tests included generating instances of elements, associating them using the im-
plemented service methods (cf. annex D) and retrieving them again. Correct
operation has been verified with verbose console output of debug messages. All
implemented element and manger classes operate correctly.

Mapping of content elements to topic map representations The map-
ping routines from OL content elements to topic map representations were tested
for all implemented elements and the exemplary content structure. Representa-
tion of content elements used multiple times in different contexts (and in differ-
ent roles) was also tested. The topic map representations of the test structures
work as expected (after some revisions).

Mapping to topic maps of content structures has been implemented by call-
ing the mapping routines of each contained elements recursively (by traversing
the associations between the elements). This approach still it contains potential
for improvements of efficiency. The mapping routines of elements with multiple
connections to their environment are called several times now, which has neg-
ative impact in performance in larger structures. However, this does influence
correct operation.

A lack of functionality has been identified for generating and associating ele-
ments from underlying topic map representation (as already mentioned before).
Element generation works, however, reconstructing the associations between el-
ements is still under development.

96 CHAPTER 11. EVALUATION & RESULTS

Visualization of content structures The visualisation application was tested
by rendering the whole content structure including content models (to test com-
pleteness of visualization) and by rendering the context of every element con-
tained in the exemplary content (to test comprehensibility of visualisation and
linking to content and other element's context). After some tuning of the param-
eters of the visualization engine, both tests have been completed successfully.
Based upon this, comprehensibility was tested in detail in the user evaluation
described in the next session.

11.2 User evaluation

A member of the Scholion development team was asked to evaluate the manage-
ment routines of the system by creating exemplary learning content. Creation
was carried out by invoking the service routines directly from java code (within
a test driver). Both, the learning content model and the communication content
model, have been tested.

A learning content structure was created in the first step. The creation pro-
cess was preceded by a short introduction to the structure of the management
routines. The sample content covered all specified element and association types
of the learning model.

In the second step, communication content was created and linked to learn-
ing elements. A forum containing topics and discussions was established. A
selected discussion was then linked to a block element of the learning content.

Both creation steps were supported using the content structure visualiser,
which displayed the already created elements and the established associations.

The following feedback on appropriateness of the system was received:

• The structure of learning content and communication content was mapped
correctly to the built models.

• The management routines as a whole are understandable and appropriate
for creating content structures.

• The mapping of Scholion elements to distinct classes allows easy compo-
sition of learning material.

11.2. USER EVALUATION 97

• The inter-content-model linking routines (e.g. for linking discussions to
learning content) work as expected. However identification of elements
other than by their designators (e.g. by an id) would make management
easier.

• The content structure visualiser helped to keep track of the content cre-
ation process.

• Assignment of learning-unit specific block types, content representations,
and annotations is rather complicated to use but implemented in a sound,
comprehensible way.

• Management of annotations already works as expected but needs more so-
phisticated management routines (especially in terms of altering annota-
tions).

• Detailed knowledge on topic maps is not needed to use the system.

The user evaluation did not identify any previously unknown shortcomings
of the system. However, it confirmed the already known areas for improvement.
Overall, the system was considered appropriate and usable for representation of
Scholion content.

Chapter 11: Summary

This chapter has described the accomplishment of the tests and
evaluations as defined in chapter 10. The results show, that the
main objectives of the work have been fulfilled. However, certain
deficiencies in terms of functionality and stability have shown up,
which will have to be corrected in future work (see section 12.3). This
chapter completes the work on objectives 5e and 6b.

98 CHAPTER 11. EVALUATION & RESULTS

Chapter 12

Conclusions

'Where shall I begin, please your Majesty?' He
asked.
'Begin at the beginning,' the King said, very
gravely,
'and go on till you come to the end: then stop.'

The White Rabbit & the King in [Car66]

The global goal of this work was to design and develop a system which enables
flexible representation of OL content. The main objectives have been:

• Identify the requirements OL approaches and eLearning concepts set on
data representation for content.

• Identify and justify the kinds of content (content types) necessary for or-
ganisational learning.

• Develop models for every content type, which provide a respective frame
of reference for each area (i.e. define the types of elements and how they
can be associated). This is necessary to build a meshed content structure,
which provides semantic added value.

• Design and implement a software system, which allows to manage these
content structures by the means of suitable data representation. The user
of this software (e.g. content developers), however, must not be burdened
with managing representation interna but have to be provided a simple,
content-oriented interface for building content structures.

99

100 CHAPTER 12. CONCLUSIONS

• Build a sample application, which uses the developed software compo-
nents. This application is used for testing the components as well as demon-
strating the potential of this approach for users.

Each of these objectives has been reached. Some components have to be con-
sidered preliminary, prototypically or under development as regards implemen-
tation. However, the principle functionality has been demonstrated in the cur-
rent state of implementation.

12.1 On the Use of Topic Maps

Topic maps have been chosen to be the conceptual and technical foundation for
this work. With their generic approach to data representation, they are power-
ful means to represent content. Content can be flexibly assembled, intertwined
and instantiated using different information representations depending on the
current learning scenario.

The concepts of association roles, occurrence types and scopes enable to change
the meaning and actual appearance of a content element depending on the con-
text it is used in. In daily use, learning content can be reused for different learn-
ing contexts and can be augmented by user's connotations (i.e. define the indi-
vidual meaning of a content element). Content can be instantiated in arbitrary
types of representation and level of detail by using occurrences. It is even pos-
sible to change the representation of content depending on the current learning
context.

Using type-instance-relationships in a topic map, it is possible to represent
content models in topic map constructs and in this way integrate them directly
into the topic maps. Thus, every topic map is self contained, i.e. besides the
actual content, it also contains the models necessary to interpret this content
and verify its structure.

Currently, it is not possible to formulate constraints in a standardized way
(i.e. which types of topics can be associated by which types of associations in
which roles, etc.). A language to specify constraints - TMCL (Topic Map Con-
straint Language) - is currently developed to remove this limitation. However,
TMCL is not fully defined yet - support can be hardly implemented at the mo-
ment. For this work, the formulation of constraints was implemented using spe-
cific associations, which have been defined in a separate meta-model. Knowing

12.2. ON RELEVANT SCHOOLS OF KNOWLEDGE MANAGEMENT 101

how to interpret these meta-associations enables to check the validity of the rep-
resented content structure. Together with the self-containedness of representa-
tion, powerful means of data exchange are created. Models for new content types
can be easily distributed together with the actual content.

All this flexibility leads to high complexity of the resulting models. It is un-
acceptable to confront end users with the entire topic map structure of even the
simplest learning content (as already the content models consist of about 100
elements and several hundred associations). Hence, the topic map constructs
were encapsulated in content element wrappers, which are easy and straight-
forward to use. However, to keep the advantages of the topic map representation
in terms of semantic association and context queries, users are also given direct
access to the topic map layer. Manager classes have been developed for each
layer of the software system (on topic map layer, meta-model layer and model
layer) in order to provide structured and governed access to these components.

In all, topic maps have proven the ideal (and so far only) means to manage
content structure in the required polymorphism and interconnectedness. How-
ever, the complexity that goes along with their representational power makes
topic maps hard to manage and requires sophisticated routines for access and
modification.

12.2 On relevant Schools of Knowledge Man-

agement

In this section, this work is put into the context of approaches and schools of
knowledge management (KM). The main objective of this work - to create a flex-
ible means of data representation for OL content - can only be fulfilled when
the different schools of KM and OL are considered in this work. The review of
existing OL approaches (which actually also contained approaches commonly
considered to focus on KM) was a first step to meet this requirement. In this ex-
amination, it became obvious, that by far not all approaches substantially con-
tribute to the foundations of this work.

Candidates for KM approaches of interest are those which explicitly focus on
knowledge as a (tangible or intangible) good that can be transfered between in-
dividuals. Furthermore, those approaches are of interest, which give statements

102 CHAPTER 12. CONCLUSIONS

on how knowledge transfer happens. These constraints originate from the as-
sumption, that organisational knowledge actually is knowledge of individuals
which is share and spreads across the whole organisation.

Following these constraints, two schools of KM are considered relevant: the
SECI approach of Nonaka and Takeuchi (and the works building upon them, like
Krogh et. al.) and the Knowledge Lifecycle of Firestone and McElroy (and their
conceptual predecessors, Argyris & Schön as well as Kim).

The SECI approach is a conceptual framework of how knowledge is shared
among individuals. It differentiates between implicit and explicit knowledge and
identifies four basic means of knowledge transfer: socialization, externalisation,
combination and internalisation. When putting this work in the context of these
four means, it obviously focuses on the latter three, where the central point is
support for combination of explicit knowledge. Besides that, the approach pre-
sented here aids individuals to externalize their view on work processes (exter-
nalisation) and helps them to understand that of others in order to develop a
common view on their work (internalisation). This is however out of scope of
this work and will be elaborated and examined in future work.

The Knowledge Lifecycle describes how organisational knowledge is created
and used. Firestone and McElroy put the process of knowledge creation in the
context of an organisation's business processes. This work supports a similar
assumption by stating, that organisational learning happens along daily work
processes. The knowledge lifecycle therefore provides an explanatory model of
the stages to be supported during learning using a platform that supports OL.
Again, the organisational learning process itself is out of scope of this work and
will have to be examined in future research.

12.3 On Directions for further Development

The work presented here has to be seen as a first step towards the development
of a platform to support organisational learning. In combination with the ex-
isting implementation of Scholion, the software results of this work provide the
foundations of this platform. The topic map engine and the OL content models
(together with their access routines) build the future data management layer of
Scholion and will allow new applications and features to support learning along
the work process.

12.3. ON DIRECTIONS FOR FURTHER DEVELOPMENT 103

Conceptually, this work has reached a stable state and can be used as a foun-
dation for further development. From a software point of view, several compo-
nents have to be completed and/or stabilized in order to get beyond prototype
status:

• Complete the content model for work-process content (which currently has
only been designed conceptually)

• Perform in-depth tests of the software components with real-world learn-
ing content

• Integrate the new data management layer with Scholion, starting with the
implementation of a Scholion Data Importer to transfer existing learning
content structures to topic map representation

• Redesign and refine the application for context visualization of learning
content.

Most of these points are already subject of starting or ongoing project work and
diploma thesis supervised by the author of this work. The goal is to have com-
plete and fully functional prototype of the software system (including the points
given above) by the end of 2007.

Data representation based upon topic maps opens up a whole new world
of possibilities for individualized learning support in educational and organisa-
tional settings. Providing individual learning context and means for interaction
among individuals (in its broadest sense) are the first steps towards computer
supported learning settings, which may sensibly support or even come close to
learning in actual organisational scenarios.

104 CHAPTER 12. CONCLUSIONS

Bibliography

[All02] V. Allee. The Future of Knowledge: Increasing Prosperity
Through Value Networks. Butterworth-Heinemann, 2002.

[Arg90] C. Argyris. Overcoming organizational defenses, facilitating or-
ganizational learning. Allyn and Bacon, Boston, 1990.

[AS78] C. Argyris and D. Schön. Organizational Learning: A Theory Of
Action Perspective. Addison-Wesley, 1978.

[AS99] C. Argyris and D. Schön. Die lernende Organisation: Grundla-
gen, Methode, Praxis. Klett-Cotta, Stuttgart, 1999.

[AS05a] A. Auinger and C. Stary. Didaktikgeleiteter Wissenstransfer. In-
teraktive Informationsräume für Lern-Gemeinschaften im Web.
Deutscher Universitätsverlag, 2005.

[AS05b] A. Auinger and C. Stary. Effektive Content-Produktion für selbst-
gesteuerten, polymorphen Wissenstransfer. In Proceedings of 7.
Internationale Tagung Wirtschaftsinformatik (WI2005), 2005.

[Aui03] A. Auinger. Technologische Unterstützung didaktikgeleiteten
Wissenstransfers. PhD thesis, University of Linz, Oct., 2003.

[AvE01] A. Abecker and L. van Elst. Integrating task, role and user mod-
eling in organizational memories. In The 14 Int. FLAIRS Confer-
ence Proceedings, Key West, Florida, 2001. AAAI Press.

[BB03] O. W. Bertelsen and S. Bødker. Activity theory. In J. Carroll,
editor, HCI Models, Theories, and Frameworks: Toward an In-
terdisciplinary Science. Morgan Kaufman Publishers, 2003.

105

106 BIBLIOGRAPHY

[Bor04] N. Boreham. Orienting the work-based curriculum towards work
process knowledge: a rationale and a German case study. Studies
in Continuing Education, 26(2):209--227, 2004.

[Car66] L. Caroll. Alice's Adventures in Wonderland. D. Appleton & Co,
New York, 1866.

[Car71] L. Carroll. Through the Looking Glass. D. Appleton & Co, 1871.

[CE93] M. Cole and Y. Engeström. A cultural-historical approach to dis-
tributed cognition. In G. Salomon, editor, Distributed cogni-
tions. Psychological and educational considerations, pages 1--
47. Cambridge University Press, 1993.

[CHKM05] A. Carell, T. Herrmann, A. Kienle, and N. Menold. Improving the
coordination of collaborative learning with process models. In
T. Koschmann, D. Suthers, and T.W. Chan, editors, Proceedings
of CSCL 2005. The next 10 Years., pages 18--27, 2005.

[Cre05] A. Cregan. Building Topic Maps in OWL-DL. In Proceedings
of Extreme Markup Languages 2005, Montreal, Canada, 2005.
IDEAlliance.

[DR97] C. Dahme and A. Raeithel. Ein tätigkeitstheoretischer Ansatz zur
Entwicklung von brauchbarer Software. Informatik-Spektrum,
20:5--12, 1997.

[Eng87] Y. Engeström. Learning by expanding. Orienta-konsultit,
Helsinki, 1987.

[Eng05] Y. Engeström. Developmental work research: Expanding activ-
ity theory in practice. Lehmanns Media, Berlin, 2005.

[Eul98] S. Eulgem. Die Nutzung des unternehmensinternen Wissens. Pe-
ter Lang Verlag, Frankfurt, 1998.

[FHL+98] E. D. Falkenberg, W. Hesse, P. Lindgreen, B. E. Nilsson, J. L. H.
Oei, C. Rolland, R. K. Stamper, F.J.M. van Assche, A.A. Verrijn-
Stuart, and K. Voss. A framework of information system concepts.

BIBLIOGRAPHY 107

The FRISCO Report. online version, International Federation for
Information Processing WG 8.1, 1998.

[FM03a] J. Firestone and M. McElroy. Excerpt from The Open Enterprise:
Building Business Architectures for Openness and Sustainable
Innovation. KMCI Online Press, 2003.

[FM03b] J. Firestone and M. McElroy. Key Issues in the new Knowledge
Management. Butterworth-Heinemann, 2003.

[GN00] E.R. Gansner and S.C. North. An open graph visualization system
and its applications to software engineering. Software - Practice
and Experience, 30(11):1203--1233, 2000.

[GR00] P. Green and M. Rosemann. Integrated process modeling: An on-
tological evaluation. Information Systems, 25(2):73--87, 2000.

[Gul05] A.D. Gulbrandsen. Conceptual modeling of topic maps with orm
versus uml. In L Maicher and J. Park, editors, Charting the
Topic Maps Research and Applications Landscape. First Inter-
national Workshop on Topic Maps Research and Applications,
TMRA 2005., pages 93--106, Berlin, Germany, 2005. Springer.

[Hub91] G. Huber. Organizational learning: The contributing processes
and the literatures. Organization Schiences, 2(1), 1991.

[ISO02] ISO JTC1/SC34/WG3. ISO/IEC 13250 Topic Maps. Standard
13250, ISO/IEC, May 2002.

[ISO05] ISO JTC1/SC34. Topic Maps Constraint Language. working draft
standard, ISO/IEC, 2005.

[ISO06a] ISO JTC1/SC34/WG3. Information Technology - Topic Maps -
Part 2: Data Model. International Standard 13250-2, ISO/IEC,
June 2006.

[ISO06b] ISO JTC1/SC34/WG3. Information Technology - Topic Maps -
Part 3: XML Syntax. International standard, ISO, June 2006.

108 BIBLIOGRAPHY

[JRH05] I. Jahnke, C. Ritterskamp, and T. Herrmann. Sociotechnical roles
for sociotechnical systems: a perspective from social and com-
puter science. In 2005 AAAi Fall Symposium, American Associ-
ation for Artificial Intelligence, 8. Symposium: Roles, an inter-
disciplinary perspective. AAAI Press, 2005.

[KH04a] A. Kienle and T. Herrmann. Collaborative learning at the work-
place by technical support of communication and negotiation. In
Multikonferenz Wirtschaftsinformatik (MKWI) 2004, volume 1,
pages 43--57, 2004.

[KH04b] A. Kienle and T. Herrmann. Konzepte für die Lerngruppe:
Prozessunterstützung, Annotationen und Aushandlung. In
J. Haake, G. Schwabe, and M. Wessner, editors, CSCL-
Kompendium, pages 171--183. Oldenbourg Verlag, München,
2004.

[Kim93] D.H. Kim. A Framework and Methodology for Linked Individual
and Organisational Learning: Applications in TQM and Prod-
uct Development. PhD thesis, Sloan School of Managment, Mas-
sachusetts Institute of Technology, 1993.

[Kim01] D.H. Kim. Organizing for Learning: Strategies for Knowl-
edge Creation and Enduring Change. Pegasus Communications,
2001.

[KNM99] V. Kaptelinin, B.A. Nardi, and C. Macaulay. Methods & tools: The
activity checklist: a tool for representing the `̀spacé' of context.
interactions, 6(4):27--39, 1999.

[LB98] H. Linger and F. Burstein. Learning in organisational memory
systems: An intelligent decision support perspective. In Pro-
ceedings of the 31st Hawai Conference on System Sciences. IEEE
Press, 1998.

[Leo78] A.N. Leont'ev. Activity, Consciousness, and Personality.
Prentice-Hall, 1978.

BIBLIOGRAPHY 109

[LLN00] T. Le, L. Lamontagne, and T. Nguyen. A visual tool for structuring
and modeling organizational memories. In CIKM '00: Proceed-
ings of the ninth international conference on Information and
knowledge management, pages 258--263, New York, NY, USA,
2000. ACM Press.

[MDZH00] P. Mulholland, J. Domingue, Z. Zdrahal, and M. Hatala. Sup-
porting organisational learning: an overview of the ENRICH ap-
proach. Information Services and Use, 20(1):9--23, 2000.

[MO82] J. March and J. Olsen. Ambiguity and Choice in Organizations.
Universitetsforlaget, Bergen, Norway, 1982.

[MPS02] G. Mori, F. Paternò, and C. Santoro. CTTE: Support for Devel-
oping and Analyzing Task Models for Interactive System Design.
IEEE Transactions on Software Engineering, 28(9):797--813,
2002.

[MRRvdA06] J. Mendling, J. Recker, M. Rosemann, and W. van der Aalst. Gen-
erating correct epcs from configured c-epcs. In H. M. Haddad,
editor, Proceedings of the 21st Annual ACM Symposium on Ap-
plied Computing, pages 1505--1510, Dijon, France, 2006. ACM
Press.

[Nar96] B.A. Nardi. Studying Context: A Comparison of Activity The-
ory, Situated Action Models, and Distributed Cognition. In B.A.
Nardi, editor, Context and Consciousness: Activity Theory and
Human-Computer Interaction, chapter 4, pages 69--102. MIT
Press, 1996.

[NT95] I. Nonaka and H. Takeuchi. The Knowledge-Creating Company:
How Japanese Companies Create the Dynamics of Innovation.
Oxford University Press, 1995.

[Ont03] Ontopia. The RTM RDF to topic maps mapping,
http://www.ontopia.net/topicmaps/materials/rdf2tm.html,
2003.

110 BIBLIOGRAPHY

[Ont06] Ontopia. RDF support in the Omnigator,
http://www.ontopia.net/omnigator/docs/navigator/userguide.html,
2006.

[Paw01] J.M. Pawlowski. Das Essener-Lern-Modell (ELM): Ein Vorge-
hensmodell zur Entwicklung computerunterstützter Lernumge-
bungen. PhD thesis, University of Essen, 2001.

[PC05] J. Park and A. Cheyer. Just for me: topic maps and ontologies.
In L. Maicher and J. Park, editors, Charting the Topic Maps Re-
search and Applications Landscape. First International Work-
shop on Topic Maps Research and Applications, TMRA 2005.,
pages 145--59, Berlin, Germany, 2005. Springer.

[Pep00] S. Pepper. The tao of topic maps. In Proceedings of XML Europe,
2000.

[Pol03] P.R. Polsani. Use and abuse of reusable learning objects. Journal
of Digital Information, 3(4), 2003.

[Raf05] S. Raffeiner. Modelling ontologies with topic maps and owl: Im-
plementation challenges and conceptual issues. Master's thesis,
Technical University of Vienna, 2005.

[Ram96] B. Ramesh. Toward a meta-model for representing organiza-
tional memory. In Proceedings of the 29st Hawai Conference
on System Sciences. IEEE Press, 1996.

[Rat03] H. Rath. The Topic Maps Handbook. empolis GmbH, 2003.

[Red07] Red Hat Middleware. Hibernate Reference Documentation. Ref-
erence documentation, Red Hat Middleware, 2007.

[RFW] M. Robertson, A. Fluck, and I. Webb. Activity theory.

[RR06] M. Rosemann and J. Recker. Context-aware process design: Ex-
ploring the extrinsic drivers for process flexibility. In T. La-
tour and M. Petit, editors, The 18th International Conference
on Advanced Information Systems Engineering. Proceedings of

BIBLIOGRAPHY 111

Workshops and Doctoral Consortium., pages 149--158, Luxem-
bourg, 2006. Namur University Press.

[RSCS04] D. Reynolds, P. Shabajee, S. Cayzer, and D. Steer. Swad-europe
deliverable 12.1.7: Semantic portals demonstrator- lessons
learnt, 2004.

[SAJ+02] E. Soderstrom, B. Andersson, P. Johannesson, E. Perjons, and
B. Wangler. Towards a framework for comparing process mod-
elling languages. In Proceedings of the 14th International Con-
ference on Advanced Information Systems Engineering, CAiSE,
pages 600--611. Springer, 2002.

[Sch05a] C.O. Scharmer. Theory u: Leading from the emerging future -
presencing as a social technology of freedom. Author's excerpt of
forthcoming book, 2005.

[Sch05b] S. Schluep. Modularization and structured markup for web-
based learning content in an academic environment. Shaker,
Aachen, 2005.

[Sen90] P. Senge. The Fifth Discipline: The Art and Practice of the Learn-
ing Organization. Doubleday/Currency, 1990.

[SKR95] P. Senge, A Kleiner, and C. Roberts. The fifth discipline field-
book: strategies and tools for building a learning organization.
Nicholas Brealey, 1995.

[Sow84] J. Sowa. Conceptual Structures. Addison-Wesley, Reading, 1984.

[Sow00] J. Sowa. Knowledge Representation: Logical, Philosophical and
Computational Foundations. Brooks-Cole, Pacific Grove, 2000.

[SSJF04] P. Senge, C.O. Scharmer, J. Jaworski, and B.S. Flowers. Pres-
ence: Human Purpose and the Field of the Future. Society for
Organizational Learning, 2004.

[Ste89] E. W. Stein. Organizational Memory: Socio-technical Frame-
work and Empirical Research. PhD thesis, University of Penn-
sylvania, 1989.

112 BIBLIOGRAPHY

[Ste95] E. W. Stein. Organizational memory: Review of concepts and rec-
ommendations for management. International Journal of Infor-
mation Management, 15(1):17--32, 1995.

[Sto03] S. Stoiber. Organisationales Lernen 'Online' - Methodik und
Werkzeug. PhD thesis, University of Linz, 2003.

[Top01] TopicMaps.org Authoring Group. Xml topic maps (xtm) 1.0.
Standard, TopicMaps.org, 2001.

[Vat04] B. Vatant. Ontology-driven topic maps. In Proceedings of XML
Europe 2004, Amsterdam, 2004.

[VK00] J. Virkkunen and K. Kuutti. Understanding organizational learn-
ing by focusing on activity systems. Accounting, Management
and Information Technologies, 10(4):291--319, 2000.

[vKNI00] G. von Krogh, I. Nonaka, and K. Ichijō. Enabling Knowledge
Creation: How to Unlock the Mystery of Tacit Knowledge and
Release the Power of Innovation. Oxford University Press US,
2000.

[vW01] M. van Welie. Task-Based User Interface Design. PhD thesis,
Vrije Universiteit - Dutch Graduate School for Information and
Knowledge Systems, 2001.

[W3C04a] W3C. Owl web ontology language overview, 2004.

[W3C04b] W3C. Rdf primer, 2004.

[W3C06] W3C. W3c rdf and owl activities, 2006.

[Wen99] E. Wenger. Communities of Practice: Learning, Meaning, and
Identity. Cambridge University Press, 1999.

[Wor95] Workflow Management Coalition. The workflow reference
model. Technical report, Workflow Management Coalition, 1995.

[WW97] C. Wargitsch and T. Wewers. Workbrain: Merging organizational
memory and workflow management systems. In Workshop of

BIBLIOGRAPHY 113

Knowledge-Based Systems for Knowledge Management in En-
terprises at the 21st annual German Conference on AI (KI-97),
1997.

114 BIBLIOGRAPHY

Annex

115

Appendix A

Approaches to Organisational
Learning

This annex contains a review of recent and historical approaches for organisa-
tional learning and organisational memories. All presented concepts have been
reviewed regarding types of content and requirements on data representation.
In the descriptions of the concepts, statements are given on what to learn and on
the required context of learning. Both aspects contribute to the identification of
the relevant types of content. Requirements on data representation are derived
from statements on context of learning primarily. The results of the review are
consolidated in chapter 2. The following concepts have been considered:

• Concepts focusing on the learning process

– Cycle of Choice (March &
Olsen)

– Argyris & Schön

– Huber

– SECI-Model (Nonaka, Takeuchi
& Krogh)

– The Fifth Discipline (Senge)

– Kim

– Stoiber

– ENRICH (Mulholland et al.)

– Theory U (Scharmer, Senge,
Jaworski & Flowers)

– Knowledge Lifecycle (Fire-
stone & McElroy)

– Value Networks (Allee)

• Concepts focusing on the objects of learning

117

118 APPENDIX A. APPROACHES TO ORGANISATIONAL LEARNING

– Stein

– Abecker & van Elst

– Eulgem

– Linger & Burstein

– Ramesh

– Le, Lamontagne & Nguyen

– Wargitsch & Wewers

This annex complements chapter 2 with details on the reviewed approaches.

A.1 Concepts focusing on the Learning Process

A.1.1 March & Olsen

In the Cycle of Choice [MO82], March & Olsen adress four aspects which - when
intertwined - constitute the foundations for organisational development: indi-
vidual beliefs, individual actions, organisational actions and environmental re-
sponse. They also define learning obstacles (role constrained learning, audience
learning, superstitious learning and learning under ambiguity) which cause in-
complete learning cycles by breaking the cycle between any two of the aspects
mentioned before.

They do not give any statements about how learning itself occurs (no state-
ment on what to learn). However, they give factors, which hamper learning (but
do not give hints on how these obstacles could be overcome). The learning ob-
stacle Learning under ambiguity allows certain assumptions on the context to
be provided for effective learning can be derived. Learning under ambiguity oc-
curs, whenever individuals lack enough information to interpret their environ-
ment (or its changes) and decide about their reactions correctly. This obstacle
could be avoided by offering individuals information relevant in their current
situation in a structured way (context-sensitive offering of information).

A.1.2 Argyris & Schön

Argyris & Schön [AS78, Arg90, AS99] are the first to distinguish between single-
loop and double-loop learning. In single-loop learning, individuals or organi-
zations (which are represented by individuals in this approach) modify their ac-
tions based upon the difference between expected and observed outcome. In
double-loop learning, individuals question the underlying assumptions, values

A.1. CONCEPTS FOCUSING ON THE LEARNING PROCESS 119

and policies of an action and modify these. They introduce the concepts of pri-
vate images and organisational maps and are the first to distinguish between
individual mental models (or 'theories-in-use') and official organisational points-
of-view (or 'espoused theories').

In [AS99], Argyris & Schön give statements on what to learn in OL. They
aregue for information about activities, decisions and procedure models, i.e. in-
formation about the process within an organisation, irrelevant wether it is repre-
sented within documents or in people's minds. Regarding the context of OL, the
authors state, that OL occurs, whenever people experience a mismatch between
expected and observed results of their behaviour. They claim that integration
into the organisational knowledge base (the 'pictures of the organisation') is in-
evitable to make organisational knowledge persistent - in both people's heads
and organisational artefacts (e.g. diagrams).

A.1.3 Huber

Huber [Hub91] sees OL as process, consisting of knowledge acquisition (basi-
cally individual learning from practice), information distribution and informa-
tion interpretation (basically learning from preprocessed information). Huber is
one of the first to introduce the idea of an organisational memory, which makes
information persistent.

Huber gives some hints on what to learn in his description of organisational
memories. He distinguishes between soft facts (which are only available in peo-
ple's heads) and hard facts (which include descriptions of routines, guidelines
or organisational manuals). In his elaboration on information interpretation,
Huber gives statements on the context of learning: existing individual mental
models have to be considered during learning, media richness is a central point
in efficiency of interpretation, information overload has to be avoided.

A.1.4 SECI-Model (Nonaka, Takeuchi & Krogh)

The SECI-Cycle of Nonaka and Takeuchi [NT95] and the extension of their work
by Krogh et al. [vKNI00] provides explanatory approaches of how knowledge
evolves and is shared (through socialisation, externalisation, combination and
internalisation) and how knowledge creation can be enabled (with five identified
enablers, which have to be implemented on strategical level).

120 APPENDIX A. APPROACHES TO ORGANISATIONAL LEARNING

In terms of what to learn, Nonaka and Takeuchi distinguish explicit and im-
plicit knowledge. Explicit knowledge is somehow codified in artifacts and can
easily be transfered. Implicit knowledge is only contained in people's heads,
highly context-sensitive and hard to be externalised. They distinguish cogni-
tive elements (conceptual understanding) and technical elements (know-how)
of knowledge. Krogh et al.'s work gives some hints on the learning context: in
order to enable knowledge creation - or learning - they suggest to set measures
to manage conversations and to create the right context as well as to globalize
local knowledge. While the authors give application examples in the individual,
interpersonal area, their suggestions may also be applicable in the context of an
electronic OL platform.

A.1.5 The Fifth Discipline (Senge)

In his most influential work [Sen90], Senge presents five disciplines, which have
to be mastered to overcome obstacles on the way towards a 'learning organisa-
tion': personal mastery, mental models, shared vision, team learning and sys-
tems thinking. Senge mainly focuses on soft factors in his work, which are hardly
relevant for this work and will not be presented here in detail.

However, some of the concepts he presents in the fifth discipline fieldbook
[SKR95] provide input for the question on the appropriate context of learning:
In the area of mental models, he proposes to provide means to express individ-
ual motivators and conceptual understandings and to explore those of others.
In systems thinking, means to express causal dependencies (like causal loop di-
agrams) are considered useful to aid mastery of this discipline. As Senge focuses
on the process to a learning organisation, he consequently gives no statements
on what to learn.

A.1.6 Kim

Kim's framework for organisational learning [Kim93, Kim01] incorporates the
approaches of March & Olsen [MO82], Argyris & Schön [AS78] as well as some
ideas of Senge [Sen90]. Basically using the single- and double-loop-learning ap-
proach and extending it beyond individual to organisational level, Kim proposes
to consider mental models to be the focal subject of organisational learning.

A.1. CONCEPTS FOCUSING ON THE LEARNING PROCESS 121

Mental models contain framework, i.e. know-why or conceptual understand-
ing of a phenomenon, and routines, i.e. know-how or procedural knowledge.

Frameworks and routines as part of mental models are also the central ele-
ment Kim gives in terms of what to learn. In terms of the learning context, Kim
adds some aspects to March & Olsen's learning obstacles. Situational Learn-
ing, which occurs when new knowledge is not made persistent and fragmented
learning, which occurs when new knowledge does not spread across the organi-
sation, point out the need for a means of external knowledge representation and
distribution.

A.1.7 Stoiber

The approach of Stoiber [Sto03] focuses on business processes as a means for
and subject of organisational learning. The work presented here was largely
inspired by this approach. Stoiber has examined the role of representations
of work processes during organizational learning (in the understanding of Kim
[Kim93]).

In terms of what has to be learned, Stoiber identifies knowledge about work
processes to be a central element, to which further information can be attached
or incorporated, respectively. In terms of context of learning, Stoiber states that
for successful OL, learners have to be aware of the actual context of work (which
itself can be subject of learning). She proposes to use graphical representations
of business processes to enable work context awareness.

A.1.8 ENRICH (Mulholland et al.)

The ENRICH approach [MDZH00] presents a framework to support organi-
sational learning. The starting point are work representations, which are re-
sources (documents or tools) used during work and contain or represent knowl-
edge crucial to the organisation. These work representations are then 'enriched'
with means of communication and semantic links to related information.

Mulholland et al. do not say much about what has to be learned, i.e. which
kind of information is exactly represented in work representations. In terms of
the learning context, they state, that OL happens in the context of actual work,
which has to be provided to the worker during learning - in this case, this is
realized by providing the respective work representations.

122 APPENDIX A. APPROACHES TO ORGANISATIONAL LEARNING

A.1.9 Theory U (Scharmer, Senge, Jaworski & Flowers)

Scharmer et al. [SSJF04, Sch05a] present a framework to explain and aid change
in organisations - the Theory U. Theory U describes a process to shift and decon-
struct perspectives until something 'new' arises which is subsequently stabilized
and put to practice. The focal point of the process is the evolution of new and
deeper insights and is called Presencing.

While Theory U seems to be a promising approach to aid processes of pro-
found change, the authors remain vague in both, terms of what is the subject of
learning and terms of the context of learning. Theory U therefore does not add
any new aspects to the topics of interest in this review.

A.1.10 Knowledge Lifecycle (Firestone & McElroy)

In the Knowledge Lifecycle [FM03b] Firestone and McElroy present a process-
oriented framework of how organisational knowledge creation and consolida-
tion works (founded on single- and double-loop-learning-cycles). They put knowl-
edge processing in the context of business processes and define a distributed or-
ganisational knowledge base, which represents all organisational information
(where the central building blocks are beliefs and knowledge claims), regardless
if it is contained in peoples' heads or codified in artifacts.

In terms of what to learn, the knowledge lifecycle explicitly distinguishes dif-
ferent types of information representation (individually or codified in artifacts)
but does not give any statement on the types of information contained in these
representations. In terms of context of learning, the starting point for produc-
tion of new knowledge or consolidation of existing one always is an actual busi-
ness process. Knowledge production is triggered by matches or (more likely)
mismatches of expected and observed environmental reaction.

A.1.11 Value Networks (Allee)

Value Networks [All02] are an approach to describe organisations (or more gen-
erally economic systems) with focus on the internal and external exchange of val-
ues (which are either tangible or intangible). While value networks are a means
to analyze both flows of material and immaterial goods, Allee does not explicitly
focus on the learning aspect in value networks. However, her framework allows

A.2. CONCEPTS FOCUSING ON OBJECTS OF LEARNING 123

to capture learning as an activity caused by the flow of values (like every other
activity could be expressed).

In her book and subsequent publications, Allee gives examples, which cover
aspects that are interesting for this review. In terms of what to learn, Allee spec-
ifies, that intangible values exchanged between nodes in the network include in-
formation about processes and structure as well as declarative information of
any kind. In terms of the context of learning, Allee proposes graphical visuali-
sation methods in order to facilitate understanding and learning.

A.2 Concepts focusing on Objects of Learning

A.2.1 Stein

Stein [Ste95] reviews concepts of organisational memory and gives recommen-
dations on how to facilitate organisational memory. Stein interprets OM as a
process as well as a place to store information. He defines OM is [...] the means
by which knowledge from the past is brought to bear on present activities [...].
He consequently describes types of processes that lead to organisational memo-
ries, gives enablers and obstacles and presents approaches of what are the sub-
jects of organisational memory.

In his PhD-Thesis [Ste89], Stein gives a typology of organisational knowledge
from a semantic point of view and presents statements on relevant information
types:

• techno-scientific knowledge (abstract, descriptive)

• events, people, inputs, outputs (concrete, descriptive)

• policies, values, ethics and strategies (abstract, prescriptive)

• rules, norms, roles and tasks (concrete, prescriptive)

In terms of information representation, Stein suggests to distinguish between
three types of information:

• schema: represents categorisations of information and are organized hier-
archically. It contains individuals' conceptual understanding of the world.

124 APPENDIX A. APPROACHES TO ORGANISATIONAL LEARNING

• script: describes appropriate sequencing of events in familiar situations.
Thus, scripts represent procedural routine knowledge

• system: is defined to be a set of inter-related elements which are con-
nected directly or indirectly. Systems offer support for problem-solving
and decision-making in new, unfamiliar situations. They can be repre-
sented as a (formal or informal) network of organisational structure and
dynamics, goals, values and actors.

Stein's review of organisational memory concepts provides a comprehensive overview
of the types of information relevant to OM but does hardly give statements on
the concrete form and representation of information in these types.

A.2.2 Abecker & van Elst

Abecker & van Elst [AvE01] define an organisational memory to be a means for
support of knowledge management by storing data, information and knowledge
from different sources within an organisation. They propose a multi-layered ar-
chitecture, in which information is complemented by meta-data and put into
the business context of the organization or an individual. They propose to link
information to business process models or to integrate it into a workflow man-
agement system to create this context.

In terms of information types, this approach proposes the use of the following
components:

• basic information objects (containing declarative, procedural or narrative
information)

• structural meta data about information objects (domain-independent, like
author)

• domain-specific meta data about information objects (like keywords, clas-
sification)

• organisational structure (e.g. departments and roles)

• organisational processes (including the specific involvement of employees)

A.2. CONCEPTS FOCUSING ON OBJECTS OF LEARNING 125

These information types are organized in ontologies and data sources which are
orchestrated in an layered architecture to provide work-context specific infor-
mation to employees in last consequence.

A.2.3 Eulgem

Eulgem [Eul98] proposes a concept for organisational memories based upon an
organisational knowledge model consisting of two layers: knowledge structure
and knowledge contents. Knowledge structure contains organisational concepts
(which might be entities, states or activities) and their relationships (both static
and dynamic ones, where dynamic ones are represented using process models).
Knowledge contents are assigned to a respective concept on the knowledge struc-
ture layer and hold the actual information and/or supplementary attributes for
the concept.

Summarising, this approach basically uses two types of information:

• organisational processes and how they are embedded within the organisa-
tional structure

• information about these organisational aspects

and demands that those two types are intertwined for effective use.

A.2.4 Linger & Burstein

Linger and Burstein [LB98] define an organisational memory to be a dynamic
(that is 'changing over time') set of models representing (individual) experiences
with and (organisational) views on certain tasks (and how to accomplish them).
This models contain links between material used to accomplish a task and the
activities, in which these materials are used. Conceptually, they explicitly distin-
guish individual (specific) models and organisational (general) models, which
evolve from individual models in the course of organisational learning.

Summarising, this approach basically uses two types of information:

• tasks which are accomplished through a set of activities

• information which is used in certain activities to accomplish this tasks

126 APPENDIX A. APPROACHES TO ORGANISATIONAL LEARNING

The first type is used to represent the models of each involved individual and
the (consolidated) organisational model. This distinction is not necessary for
the second type, as all models access the same information base and can even be
linked using this base.

A.2.5 Ramesh

Ramesh [Ram96] takes a process-oriented point of view to define the necessary
contents of an organisational memory. Conceptually, this approach stores mod-
els of the involved individuals' views on a certain business process, which are
linked by common objects used in this process. The models are made up of
tasks, stakeholders (actors), objects (input and output data, like requirements,
decisions, etc.) and sources (documents). This approach also allows to attach
supplementary, informal information to each of the mentioned concepts.

Summarising, this approach basically used three types of information:

• process models consisting of tasks, actors and required or produced data
and their relationships

• documents, in which the required or produced data is represented / stored

• supplementary information to detail tasks, actors, information and docu-
ments

A.2.6 Le, Lamontagne & Nguyen

Le, Lamontagne & Nguyen [LLN00] present a multi-dimensional structuring
approach for contents of an organisational memory. Their concepts of knowl-
edge units and knowledge networks constitute the types of information consid-
ered relevant.

Knowledge units (KU) are the basic building blocks of an OM and are either

• static KUs, which contain domain concepts, facts and descriptive informa-
tion

• how-to KUs, which represent task-oriented, procedural knowledge focus-
ing on personal skills and solution strategies

A.2. CONCEPTS FOCUSING ON OBJECTS OF LEARNING 127

KUs are organized in Knowledge Networks (KN), in which they are intertwined
using semantic relationships. A KN can span across different dimensions, each
containing KUs and relationships with a certain semantic meaning:

• The organisational dimension reflect the organisational structure the OM
is embedded in. It provides the actual work context and allows to gain
deeper understanding of how the organisation attains its goals

• The pedagogical dimension contains KUs that aid understanding of other
KUs - thus representing the foundations or prerequisites of the KUs related
to the actual organisational context

• The logical dimension provides information about logical relationships be-
tween KUs and provides support for automated reasoning, which the au-
thors claim could be used to generate creative solutions for problems.

A.2.7 Wargitsch & Wewers

Wargitsch & Webers propose to bring together workflow management systems
and organisational memories [WW97]. Consequently, they organize organisa-
tional knowledge along work processes and aim at continuous improvement of
workflows. As regards contents of the organisational memory, they follow a
rather focused, technically oriented approach:

• the basic elements are workflows and their building blocks respectively

• (technical) dependencies between workflows are considered to provide the
highest added value in the OM concept

• documents, that contain workflow relevant information (e.g. checklists),
are also considered relevant

• communication about workflows is also archived

128 APPENDIX A. APPROACHES TO ORGANISATIONAL LEARNING

Appendix B

ISO Topic Map Details

This annex presents the detailed structure of ISO Topic Maps. Is is a comple-
ment to chapter 5 - Data Representation Concepts.

B.1 Topics

Topics are the fundamental elements of a topic map. They represent subjects of
the perceptible world within the topic map. The relationship between topics and
subjects therefore corresponds to the one between representation and referent
in the semiotic thetrahedon (see figure B.1). This relationship is not a direct one
but is dependent on an actor's interpretation. Thus a topic map represents one
specific view onto reality, which can be shared among individuals by this means.

Figure B.2 shows how topics are connected to other building blocks. Occur-
rences and Association Roles provide the links to the other central concepts of
topic maps and will be described in the respective sections. Topic names and
variants are topic interna and will be described in the following section. The
concept of subject identifiers and locators as well as reification will be described
in the section dealing with advanced functionality of topic maps.

A topic is a symbol used within a topic map to represent one, and only one,
subject, in order to allow statements to be made about the subject. A state-
ment is a claim or assertion about a subject (where the subject may be a topic
map construct). Topic names, variant names, occurrences, and associations
are statements [...] [ISO06a]. This definition of the term topic again shows
the expressive power of topic maps (as mentioned before): it is possible to give

129

130 APPENDIX B. ISO TOPIC MAP DETAILS

Figure B.1: The Semiotic Thetrahedon (adapted from [FHL+98])

Figure B.2: Topic Maps - Topic (taken from [ISO06a])

statements not only on the semantic relationships between concepts (using as-
sociations) but also on the semantics of concepts themselves (using topic names,
variants and occurrences).

B.1.1 Topic Names & Variants

Topic elements themselves do not contain any designators but can be referred to
using an unique identifier (called item identifier). Topics can be extended with
topic name elements (one topic may have several topic names and topic names
do not have to be unique to a certain topic). A topic name is a textual description
of the subject represented by the topic. If a topic has more than one topic names
(e.g. for use in different scopes, see later), one name can be defined to be the

B.2. ASSOCIATIONS 131

default name (see figure B.3).
Variants are alternative forms of a certain topic name. They are used to de-

fine synonyms for a given topic name and enable to change the actual form of
representation, as they do not necessarily have to be strings (but can e.g. link to
encoded audio, see figure B.3). A special form of variants are sort names, which
enable alphabetical sorting of topics (corresponding to unicode order).

Figure B.3: Topic Maps - Topic Naming

B.2 Associations

Associations represent relationships between subjects and consequently are used
to link the topics representing those subjects. They are the second building block
necessary to represent a semantic network in a topic map.

An association element itself, like a topic, does not contain an designator. It
rather links to a topic that represents its type (see figure B.4). This topic again
can contain topic names and variants. Given this information, it is obvious that
the drawing in figure 5.2 is inaccurate, as the designator of the association is
not drawn as a topic. This is only accounted for better visual representation.
Using topics to define the type of an association enables consistent modelling, as
multiple associations representing the same kind of relationship are all linked to
the same topic representing this association type. This is also an effective means
for meta modelling.

Associations allow to define relationships between one or more (arbitrary)
subjects (see figure B.4). While the type of the association is defined within the
element (as described above), the meaning of the topics attached to the associa-
tion are defined using association roles.

132 APPENDIX B. ISO TOPIC MAP DETAILS

Figure B.4: Topic Maps - Association (taken from [ISO06a])

B.2.1 Association Roles

Every end point of an association has to be defined in an association role. These
roles are taken by specific topics (those to be associated). Association roles there-
fore represent the involvement of a subject in a relationship represented by an
association [ISO06a].

Like for associations, association roles do not contain any designator but
again use topics to define their type. Thus, all the statements given above also
apply here.

B.3 Occurrences

Occurrences are links to the 'outer world' (outside the topic map) and complete
the expressiveness of the topic map concept by adding index functionality. An
occurrence is a representation of a relationship between a subject and an infor-
mation resource [ISO06a]. Occurrences are used to link a topic to information
ressources (described textually or using XML inside the topic map or using a
generic URI to link to external ressources). Each topic can contain an arbitrary
number of occurrences. However, an occurrence cannot be linked to multiple
topics.

The definition of an occurrence type is necessary to be able to specify the type
of information ressource linked to a topic (or the nature of the relationship be-
tween the subjects and information resources [ISO06a]),(see figure B.5). This
type again is represented by a specific topic (as for associations and association
roles, the statements given there also apply here).

B.4. FURTHER BUILDING BLOCKS 133

Figure B.5: Topic Maps - Occurrences

B.4 Further Building Blocks - Advanced Func-

tionality

Aside from the three basic building blocks, additional elements extend the ex-
pressiveness of topic maps. Figure B.6 gives an overview about the usage of
scopes and means to model meta-elements (or hierarchies). Subject identifiers
and locators as well as the concept of reification are not shown in the figure but
are also described in the following.

Figure B.6: Topic Maps - Full Overview

134 APPENDIX B. ISO TOPIC MAP DETAILS

B.4.1 Scope

Scopes are a means to define the contexts in which certain statements of a topic
map are valid. Scopes are used to describe domains which are represented in a
topic map.

Topics themselves actually do not belong to a scope, as only statements (that
is, associations, occurrences, topic names and variants) can be valid or invalid
(not known to be valid) within a certain context. In fact, the scope is made up
of a set of topics. As a topic represents exactly one subject of reality, a scope
circumscribes a part of reality (that is, 'through which glasses one is looking onto
reality'). A special case of a scope is the unconstrained scope, which indicates
unlimited validity of the enclosed statements.

In the topic map, the scope itself (i.e. the set of topics defining the scope) is
referenced by all topic map elements which are valid in this scope.

B.4.2 Meta-Elements - Types

The topic map standard includes different means of meta modeling (i.e. building
a model of a model, defining the types of allowed topics, associations, roles and
occurrences). There are three types of meta modeling elements:

Topic Types formally are topics which are connected to other topics using
a specific kind of association - a type-instance relationship as has be used in
figure B.6 for the 'instance of'-associations. This relationship corresponds to
that between classes and objects in object-oriented programming and is used to
capture some commonality in a set of subjects [ISO06a]. Topic types can be
considered the central elements of a meta model and define the basic semantic
building blocks of a certain modeling domain.

Supertype - Subtype relationships are used whenever a more general type
(supertype) and a specialization of that type (subtype) has to be modeled (as has
been used in figure B.6 for the 'is a'-associations). This relationship actually is
not restricted to use on meta level but can be used on every level of a topic map.
It corresponds to inheritance and sub- und super-classes in object-oriented pro-
gramming. Consequently, 'subtype-supertype'-relationships are transitive, so
that a subtype of topic A is also a subtype of topic B, if topic A is a subtype
of topic B. For modeling on meta-level, the advantage is, that 'type-instance'-
relationships have only to be established between the most specific topic type

B.4. FURTHER BUILDING BLOCKS 135

and the instance. Taking figure B.7 as an example, 'SR 174 AU' here not only is
an instance of 'Golf' but also of 'VW' and of 'Car'.

Figure B.7: Topic Maps - Example for super/subtyping and instancing

Association Types, Association Role Types and Occurrence Types are for-
mally represented by the same means - using topic as described above in the
sections about associations and occurrences. This mechanism allows to define
validity of associations and types of occurrences for a certain topic map. How-
ever, it is not possible to define the topic types which can be used with an associ-
ation type or an occurrences type. This is a major drawback as the meta-model is
incomplete and can only be used for partial checking of models. Using associa-
tions on meta level to describe the relationships between topic types, association
types and occurrence types is a possible workaround. This workaround is fully
standard-compliant in terms of formal structure of the map but is not covered
by the standard in terms of semantics of the new associations (and consequently
needs a meta-meta model for specification).

Other approaches, which examine the feasibility of meta modeling (ontology
modeling) in topic maps can be found in the works of Park et al. [PC05], Gul-
brandsen [Gul05] and Vatant [Vat04].

B.4.3 Reification

The concept of reification allows to 'attach' a topic (the reifier) to any topic map
element (other then topics themselves) to include additional information on this

136 APPENDIX B. ISO TOPIC MAP DETAILS

element in the topic map. For example, creating a topic that represents the
relationship represented by an association is reification [ISO06a].

Using reification, an occurrence can be added to an association. A more com-
plex use case is the assignment of associations to a reifier to put it into relation-
ship with other topics (or reifiers). The whole concepts is recursive, also topic
maps themselves are reifiable. In this way, a topic map (reified by a topic) can
be part of another topic map.

B.4.4 Merging

The topic map standard defines rules for identifying and algorithms for merging
redundant topic map constructs, that is topics and subsequently topic names
and variants, occurrences as well as associations and association roles. This is
not of immediate relevance for this work and is not described in detail here. For
further information refer to [ISO06a].

B.4.5 Subject Identifiers & Locators

Subject identifier and locators are used to formally identify subjects and define
their semantics. They are used for precise identification and merging of topic
maps. While especially subject identifiers are a highly relevant part of every
topic, both are also not of immediate relevance for this work. Thus, only short
definitions of the concepts are given here without further explanation:

A subject indicator is an information resource that is referred to from a
topic map in an attempt to unambiguously identify the subject represented by
a topic to a human being. A subject identifier is a locator that refers to a subject
indicator [ISO06a].

A subject locator is a locator that refers to the information resource that
is the subject of a topic. The topic thus represents that particular information
resource; i.e., the information resource is the subject of the topic [ISO06a].

Both concepts can also be implemented using occurrences but are more spe-
cial, as they describe the nature a certain topic (and therefore belong to the topic
interna). Examples for the use of subject identifiers can be found in part 2 (Data
Model), section 7 of the Topic Map Standard [ISO06a].

Appendix C

Topic Map Engine

In this annex, the implementation details of the topic map engine are described.
This documentation has been generated automatically from JavaDoc embedded
in the source files.

C.1 Package ce.tm4scholion.tm

Package Contents Page

Classes
Association . 138

TopicMap Engine - Association Associations are the second main el-
ement of TopicMaps (beside Topics) and represent the relationships
between Topics.

AssociationRole . 144
TopicMap Engine - AssociationRole AssociationRoles provide the
link between Topics and Assoications.

Manager . 147
TopicMap Engine - Manager The Manager-class provides access-
routines to manipulate Topic Maps.

Manager.RoleTopic . 164
Wrapper-class for management of Association-Role-Topic-
Combinations in Sets

Occurrence . 165
TopicMap Engine - Occurrence Occurrences are a Topic's links to the
'outer world' (outside the topic map).

137

138 APPENDIX C. TOPIC MAP ENGINE

Reifiable . 170
TopicMap Engine - Reifiable Reifiable TopicMap constructs are con-
structs which can be further specified or detailed by attaching a topic
to them.

Scope . 172
TopicMap Engine - Scope Scopes are sets of Topics which span across
a set of subjects (context), in which certain Statements are valid.

Statement . 176
TopicMap Engine - Statement Statement are no defined construct of
the TMDM standard but are described as all constructs of a TopicMap
which can have a Scope in which they are valid.

Topic . 178
TopicMap Engine - Topic Topics are the central element of each Top-
icMap and represent subjects of reality.

TopicMap . 188
TopicMap Engine - TopicMap TopicMap is the root element of every
Topic Map.

TopicMapConstruct . 193
TopicMap Engine - TopicMapConstruct The basic element of the
TMDM, from which all standardized elements (constructs) are de-
rived.

TopicName . 196
TopicMap Engine - TopicName TopicNames are constructs which de-
termine the natural language designator of a Topic (and are actually
equal to the name(s) of thr represented subject in most of the cases).

Utils . 202
TopicMap Engine - Utils A collection of service routines for internal
engine use (not accessible by applications using the engine).

Variant . 206
TopicMap Engine - Variant Variants are alternative forms of a certain
TopicName.

C.1.1 Class Association

TopicMap Engine - Association Associations are the second main element of
TopicMaps (beside Topics) and represent the relationships between Topics. As-
sociations are named using an AssociationType (which is represented using a

C.1. PACKAGE CE.TM4SCHOLION.TM 139

Topic) - every Association of the same nature references the same Association-
Type. Topics are connected to the Association using AssociationRoles, which
describe the role the Topic takes in this Association.

Declaration

public class Association

extends ce.tm4scholion.tm.Statement (in C.1.8, page 176)

Constructor summary

Association() default construtor, generates Association object with
UUID as itemIdentifier

Association(String) basic constructor, generates Associaton ob-
ject with the given String as itemIdentifier

Method summary

addAssociationRole(AssociationRole) add an AssociationRole
to this Assciation.

checkTMDMCompliance()
equals(Object)
getAssociatedTopics() get the Topics associated by this Associa-

tion including the information which AssocationRoles they take
getParent() get the parent element of the Association
getRoles() get the AssociationRoles of this Association (regardless

if they are taken or not)
getType() get the AssociationType of the Association
newAssociationRole() request a new AssociationRole for this As-

sociation.
removeAssociationRole(AssociationRole) remove an Associ-

ationRole from an Association.
setParent(TopicMap) set the parent element of the Association
setRoles(Set) set the AssociationRoles of this Association
setType(Topic) set the AssociationType of the Association

140 APPENDIX C. TOPIC MAP ENGINE

Constructors

• Association
public Association()

– Description

default construtor, generates Association object with UUID as itemI-
dentifier

• Association
public Association(java.lang.String itemIdentifier)

– Description

basic constructor, generates Associaton object with the given String
as itemIdentifier

– Parameters

∗ itemIdentifier -- has to be unique for the whole TopicMap

Methods

• addAssociationRole
public void addAssociationRole(AssociationRole associa-
tionRole)

– Description

add an AssociationRole to this Assciation. AssociationRoles define
the connection points between Topics and Associations

– Parameters

∗ associationRole -- the AssociationRole to be added to this As-
sociation

• checkTMDMCompliance
public abstract java.util.Set checkTMDMCompliance()

– Description copied from TopicMapConstruct (in C.1.11, page

193)

C.1. PACKAGE CE.TM4SCHOLION.TM 141

check the compliance of this construct (including all directly attached
constructs) to the TMDM

– Returns -- a Set of all checked constructs which do not adhere the
TMDM, null is everything is compliant

• equals
public boolean equals(java.lang.Object arg0)

• getAssociatedTopics
public java.util.Map getAssociatedTopics()

– Description

get the Topics associated by this Association including information on
which AssocationRoles they take

– Returns -- a Map of -Tupels, representing which Topics have taken
which AssociationRole for this Association

• getParent
public TopicMap getParent()

– Description

get the parent element of the Association

– Returns -- the TopicMap the Association is contained in

• getRoles
public java.util.Set getRoles()

– Description

get the AssociationRoles of this Association (regardless if they are taken
or not)

– Returns -- the AssociationRoles of this Association

• getType
public Topic getType()

– Description

get the AssociationType of the Association

142 APPENDIX C. TOPIC MAP ENGINE

– Returns -- the Topic representing the AssocaitonType of the Associ-
ation

• newAssociationRole
public AssociationRole newAssociationRole()

– Description

request a new AssociationRole for this Association. The Assoication-
Role is automatically added to the Association

– Returns -- the new AssociationRole

• removeAssociationRole
public void removeAssociationRole(AssociationRole ar)

– Description

remove an AssociationRole from an Association. If the role is already
taken by a Topic, this Topic is informed of being removed

– Parameters

∗ ar -- the AssociationRole to be removed from the Association

• setParent
protected void setParent(TopicMap parent)

– Description

set the parent element of the Association

– Parameters

∗ parent -- the TopicMap the Association is contained in

• setRoles
public void setRoles(java.util.Set roles)

– Description

set the AssociationRoles of this Association

– Parameters

∗ roles --

C.1. PACKAGE CE.TM4SCHOLION.TM 143

• setType
protected void setType(Topic type)

– Description

set the AssociationType of the Association

– Parameters

∗ type -- the Topic representing the AssocaitonType of the Associ-
ation

Members inherited from classce.tm4scholion.tm.Statement (in C.1.8,

page 176)

• public Scope getScope()

• protected scope

• public void setScope(Scope s)

Members inherited from classce.tm4scholion.tm.Reifiable (in C.1.6,

page 170)

• public Topic getReifier()

• public void setReifier(Topic reifier)

Members inherited from classce.tm4scholion.tm.TopicMapConstruct
(in C.1.11, page 193)

• public boolean addItemIdentifier(java.lang.String itemIdenti-

fier)

• public abstract Set checkTMDMCompliance()

• protected firstItemIdentifier

• public String getFirstItemIdentifier()

• public Set getItemIdentifiers()

• protected itemIdentifiers

• public void setFirstItemIdentifier(java.lang.String firstItemI-

dentifier)

• public void setItemIdentifiers(java.util.Set itemIdentifiers)

144 APPENDIX C. TOPIC MAP ENGINE

C.1.2 Class AssociationRole

TopicMap Engine - AssociationRole AssociationRoles provide the link between
Topics and Assoications. They define in which way (role) a Topic particiates in an
Association. A particular AssociationRole is always attached to exactly one Asso-
ciation and can be taken by exactly one Topic at the same time. AssocaitionRoles
are specified using AssoicationRoleTypes (which are represented using Topics)
- every AssociationRole of the same nature references the same AssociationRo-
leType.

Declaration

public class AssociationRole

extends ce.tm4scholion.tm.Reifiable (in C.1.6, page 170)

Constructor summary

AssociationRole() default construtor, generates AssociationRole
object with UUID as itemIdentifier

AssociationRole(String) basic constructor, generates Associaton
object with the given String as itemIdentifier

Method summary

checkTMDMCompliance()
equals(Object)
getParent() get the parent element of the AssociationRole
getPlayer() get the Topic which plays the role defined in the Asso-

ciationRole
getType() get the AssociationRoleType of the AssociationRole
setParent(Association) set the parent element of the Association-

Role
setPlayer(Topic) set the Topic which plays the role defined in the

AssociationRole
setType(Topic) set the AssociationRoleType of the AssociationRole

C.1. PACKAGE CE.TM4SCHOLION.TM 145

Constructors

• AssociationRole
public AssociationRole()

– Description

default construtor, generates AssociationRole object with UUID as
itemIdentifier

• AssociationRole
public AssociationRole(java.lang.String itemIdentifier)

– Description

basic constructor, generates Associaton object with the given String
as itemIdentifier

– Parameters

∗ itemIdentifier -- has to be unique for the whole TopicMap

Methods

• checkTMDMCompliance
public abstract java.util.Set checkTMDMCompliance()

– Description copied from TopicMapConstruct (in C.1.11, page

193)

check the compliance of this construct (including all directly attached
constructs) to the TMDM

– Returns -- a Set of all checked constructs which do not adhere the
TMDM, null is everything is compliant

• equals
public boolean equals(java.lang.Object arg0)

• getParent
public Association getParent()

146 APPENDIX C. TOPIC MAP ENGINE

– Description

get the parent element of the AssociationRole

– Returns -- the Association the AssociationRole is attached to

• getPlayer
public Topic getPlayer()

– Description

get the Topic which plays the role defined in the AssociationRole

– Returns -- the Topic which plays the role defined in the Association-
Role

• getType
public Topic getType()

– Description

get the AssociationRoleType of the AssociationRole

– Returns -- the Topic representing the AssocaitonRoleType of the As-
sociationRole

• setParent
protected void setParent(Association parent)

– Description

set the parent element of the AssociationRole

– Parameters

∗ parent -- the Associaton the AssociationRole is attached to

• setPlayer
public void setPlayer(Topic player)

– Description

set the Topic which plays the role defined in the AssociationRole

– Parameters

∗ player -- the Topic which plays the role defined in the Associa-
tionRole

C.1. PACKAGE CE.TM4SCHOLION.TM 147

• setType
protected void setType(Topic type)

– Description

set the AssociationRoleType of the AssociationRole

– Parameters

∗ type -- the Topic representing the AssocaitonRoleType of the As-
sociationRole

Members inherited from classce.tm4scholion.tm.Reifiable (in C.1.6,

page 170)
• public Topic getReifier()

• public void setReifier(Topic reifier)

Members inherited from classce.tm4scholion.tm.TopicMapConstruct
(in C.1.11, page 193)

• public boolean addItemIdentifier(java.lang.String itemIdenti-

fier)

• public abstract Set checkTMDMCompliance()

• protected firstItemIdentifier

• public String getFirstItemIdentifier()

• public Set getItemIdentifiers()

• protected itemIdentifiers

• public void setFirstItemIdentifier(java.lang.String firstItemI-

dentifier)

• public void setItemIdentifiers(java.util.Set itemIdentifiers)

C.1.3 Class Manager

TopicMap Engine - Manager The Manager-class provides access-routines to ma-
nipulate Topic Maps. In general, basic manipulation (that is, altering the Top-
icMap) should be carried out using the methods defined here, as they ensure
consisteny across the whole Topic Map. Actually, the classes for TopicMap-
Constructs only provide public methods for operations, which cannot corrupt
the map's consistency. However, every operation publicly available there can

148 APPENDIX C. TOPIC MAP ENGINE

also be carried out using a (wrapper-)method of the Manager-class. Every Manager-
object can handle exactly one TopicMap. In addition to the TopicMap itself, the
Manager holds serveral indices of Topics used for typing and of scopes for more
efficient and consistent access. Whenever a Manager-object is created, an corre-
sponding TopicMap-object is also set up, which already contains the core topics
(for miscellaneous types) defined in the standard. The indices are implemented
as maps, where the subjectIdentifiers of the Topics are used as the key values.
If a Topic contains several subjectIdentifiers, it is registered in the index sev-
eral times correspondingly. As subjectIdentifiers have to be locators and thus
URIs, the following notation convention for subjectIdentifiers has been defined:
"urn:subject:CNxxx", where CN is

• 'a' for Topics representing AssociationTypes

• 'ar' for Topics representing AssociationRoleTypes

• 'o' for Topics representing OccurrenceTypes

• 'tn' for Topics representing TopicNameTypes

• 't' for plain Topics

• 'reifier' for Topics used to reify a reifiable construct

>'xxx' stands for the name of the Topic, which is also used to create the first
TopicName of the resprective Topic. Note, that a topic may have several subjec-
tIdentifiers and thus can be used e.g. as a plain Topic and an AssociationType at
the same time.

>In addition this notation is also used for the naming of scopes (which actu-
ally do not have subjectIdentifiers): 's' for the names of Scopes

Declaration

public class Manager

extends java.lang.Object

Constructor summary

Manager() the default constructor.

C.1. PACKAGE CE.TM4SCHOLION.TM 149

Method summary

addOccurrence(Topic, String, String) add an Occurrence of the
'String'-datatype and the given type to a Topic.

addOccurrence(Topic, String, String, String) add an Occur-
rence of the given datatype and the given type to a Topic.

addSortVariant(TopicName, String) add a sortable Variant of
the 'String'-datatype to a TopicName

addTopic(String) add a Topic to the TopicMap using the given
name.

addTopic(Topic) add a given Topic to the TopicMap
addTopicName(Topic, String) add a TopicName of the default

TopicNameType to a Topic
addTopicName(Topic, String, String) add a TopicName of the

given TopicNameType to a Topic.
addTopicName(Topic, String, Topic) add a TopicName of the

given TopicNameType to a Topic.
addTopicOfType(String, Topic) add a Topic to the TopicMap us-

ing the given name and make it an instance of the given tpye.
addVariant(TopicName, String) add a Variant of the 'String'-

datatype to a TopicName
addVariant(TopicName, String, String) add a Variant of the

given datatype to a TopicName
associate(String, Set) associate a set of Topics with an Association

of the given Type, where the Topics each take the role of the given
AssociationRoleType.

containsTopic(Topic) check wether a Topic is contained in a Topic
Map

defineAssociationRoleType(String) define a new Association-
RoleType with the given name.

defineAssociationType(String, Set) define a new Association-
Type with the given name and the given roles.

defineOccurrenceType(String) define a new OccurrenceType with
the given name.

defineScope(Set) define a new Scope and register it to the respec-
tive index

150 APPENDIX C. TOPIC MAP ENGINE

defineTopicNameType(String) define a new TopicNameType with
the given name.

disassociate(Association) remove an Association from the Top-
icMap and ensure consistency by removing the respective Associ-
ationRoles from the affected Topics.

generateTopic(String) generates a new Topic using the given name
but does not add it to the TopicMap.

getAssociationsParticipatedInRole(Topic, Topic) Retrieves the
associations a specified topic participates in in a certain role

getAssociationsRolesBetweenAssociationAndTopic(Topic, As-
sociation) Retrieves the association roles that build the bridge
between a specified topic and association

getCounterpartTopics(Topic, Topic, Topic) Combines getAs-
sociationsParticipatedInRole and getTopicsInAssocRole and thus
retrieves all topics that are assocaited with a given one in a speci-
fied role setting

getSubtypes(Topic) Return a Set of Topics which are associated
with the given Topic in a superType-subType-Relationship either
directly or indirecly (transitivly via other subTypes)

getSupertypes(Topic) Return a Set of Topics which are associated
with the given Topic in a superType-subType-Relationship either
directly or indirecly (transitivly via other superTypes)

getTopic(String) Retrieve a Topic from the TopicMap based on its
subject name

getTopicsInAssocRole(Association, Topic) Retrieves the top-
ics that take a certain role in a specified association

markVariantSortable(Variant) mark a Variant to be 'sortable'
(as defined in the TMDM)

nameScope(Scope, String) assign a name to a Scope
reify(Reifiable, Topic) reify a reifiable construct with the given

Topic
removeOccurrence(Topic, Occurrence) removes an Occurrence

from a Topic
removeTopic(Topic) removes a Topic from the TopicMap.

C.1. PACKAGE CE.TM4SCHOLION.TM 151

removeTopicName(Topic, TopicName) removes a TopicName
from a Topic

removeVariant(TopicName, Variant) removes a Variant from
a TopicName

setScope(Statement, Scope) set a Statement's Scope
setSuperSubType(Topic, Topic) define a Supertype-Subtype-relationship

in the terms of the standard
setTypeInstance(Topic, Topic) define a Type-Instance-relationship

in the terms of the standard (and implicitly create a TopicType).
topicIsInstanceOf(Topic, Topic) Checks if a Topic is an instance

of a given Type.
unReify(Reifiable, Topic) remove a reification

Constructors

• Manager
public Manager()

– Description

the default constructor. Creates a Manager object and sets up the
topic map and the indices to manage it.

Methods

• addOccurrence
public Occurrence addOccurrence(Topic t, java.lang.String

value, java.lang.String type)

– Description

add an Occurrence of the 'String'-datatype and the given type to a
Topic. If the given TopicNameType does not exist, it is created.

– Parameters

∗ t -- the Topic to which the Occurrence has to be added

∗ value -- the value of the Occurrence

∗ type -- the type of the Occurrence

– Returns -- the new Occurrence object

152 APPENDIX C. TOPIC MAP ENGINE

• addOccurrence
public Occurrence addOccurrence(Topic t, java.lang.String

value, java.lang.String dataType, java.lang.String type
)

– Description

add an Occurrence of the given datatype and the given type to a Topic.
If the given TopicNameType does not exist, it is created.

– Parameters

∗ t -- the Topic to which the Occurrence has to be added

∗ value -- the value of the Occurrence

∗ dataType -- the dataType of the Occurrence (for default dataTypes,
see Utils-class)

∗ type -- the type of the Occurrence

– Returns -- the new Occurrence object

• addSortVariant
public Variant addSortVariant(TopicName tn, java.lang.String

variant)

– Description

add a sortable Variant of the 'String'-datatype to a TopicName

– Parameters

∗ tn -- the TopicName to which the Variant has to be added

∗ variant -- the sortable Variant to be added

– Returns -- the new Variant object

• addTopic
public Topic addTopic(java.lang.String name)

– Description

add a Topic to the TopicMap using the given name. A respective Top-
icName item is also created

– Parameters

C.1. PACKAGE CE.TM4SCHOLION.TM 153

∗ name -- the name (subject) of the Topic

– Returns -- the new Topic object

• addTopic
public Topic addTopic(Topic t)

– Description

add a given Topic to the TopicMap

– Parameters

∗ t -- the Topic to be added

– Returns -- the added Topic

• addTopicName
public TopicName addTopicName(Topic t, java.lang.String

name)

– Description

add a TopicName of the default TopicNameType to a Topic

– Parameters

∗ t -- the Topic to which the TopicName has to be added

∗ name -- the name to be added

– Returns -- the new TopicName object

• addTopicName
public TopicName addTopicName(Topic t, java.lang.String

name, java.lang.String type)

– Description

add a TopicName of the given TopicNameType to a Topic. If the given
TopicNameType does not exist, it is created.

– Parameters

∗ t -- the Topic to which the TopicName has to be added

∗ name -- the name to be added

∗ type -- the TopicNameType of the TopicName

154 APPENDIX C. TOPIC MAP ENGINE

– Returns -- the new TopicName object

• addTopicName
public TopicName addTopicName(Topic t, java.lang.String

name, Topic type)

– Description

add a TopicName of the given TopicNameType to a Topic. If the given
TopicNameType is not yet registered, it is added to the index.

– Parameters

∗ t -- the Topic to which the TopicName has to be added

∗ name -- the name to be added

∗ type -- the TopicNameType of the TopicName

– Returns -- the new TopicName object

• addTopicOfType
public Topic addTopicOfType(java.lang.String name,
Topic type)

– Description

add a Topic to the TopicMap using the given name and make it an in-
stance of the given tpye. A respective TopicName item is also created

– Parameters

∗ name -- the name (subject) of the Topic

∗ type -- the Topic Type the new Topic should by an instance of
(has be existent)

– Returns -- the new Topic object, null if the given Topic Type does
not exist

• addVariant
public Variant addVariant(TopicName tn, java.lang.String

variant)

– Description

add a Variant of the 'String'-datatype to a TopicName

C.1. PACKAGE CE.TM4SCHOLION.TM 155

– Parameters

∗ tn -- the TopicName to which the Variant has to be added

∗ variant -- the Variant to be added

– Returns -- the new Variant object

• addVariant
public Variant addVariant(TopicName tn, java.lang.String

variant, java.lang.String dataType)

– Description

add a Variant of the given datatype to a TopicName

– Parameters

∗ tn -- the TopicName to which the Variant has to be added

∗ variant -- the Variant to be added

∗ dataType -- the dataType of the Variant (for default dataTypes,
see Utils-class)

– Returns -- the new Variant object

• associate
public Association associate(java.lang.String associa-
tionType, java.util.Set rolesPlayed)

– Description

associate a set of Topics with an Association of the given Type, where
the Topics each take the role of the given AssociationRoleType. If the
given AssociationType or an AssociationRoleType does not exist, it is
created.

– Parameters

∗ associationType --

∗ rolesPlayed --

– Returns --

• containsTopic
public boolean containsTopic(Topic t)

156 APPENDIX C. TOPIC MAP ENGINE

– Description

check wether a Topic is contained in a Topic Map

– Parameters

∗ t -- the Topic to be search

– Returns -- ture if the Topic was found, false otherwise

• defineAssociationRoleType
public Topic defineAssociationRoleType(java.lang.String
name)

– Description

define a new AssociationRoleType with the given name. The Topic
representing the type is registered in the respective index and added
to the TopicMap (including a respective TopicName, which type is set
to 'urn:subject:tnAssociationRoleType', marking that this is the name
of an AssociationRoleType).

– Parameters

∗ name -- the name of the new AssociationRoleType

– Returns -- the Topic representing the AssociationRoleType

• defineAssociationType
public Topic defineAssociationType(java.lang.String name,
java.util.Set roles)

– Description

define a new AssociationType with the given name and the given roles.
The Topic representing the associationType and the associationRo-
leTypes are registered in the respective index and added to the Top-
icMap (including a respective TopicName, which type is set to 'urn:subject:tnAssociationType'
or 'urn:subject:tnAssociationRoleType', marking that this is the name
of an AssociationType or an AssociationRoleTypes, respectively). If
an AssociationRoleType already exists in the index (because it is al-
ready use by another association, it is not created a second time.

– Parameters

∗ name -- the name of the new AssociationType

C.1. PACKAGE CE.TM4SCHOLION.TM 157

∗ roles -- set of the names of the corresponding AssociationRole-
Types

– Returns -- the Topic representing the AssociationType

• defineOccurrenceType
public Topic defineOccurrenceType(java.lang.String name
)

– Description

define a new OccurrenceType with the given name. The Topic rep-
resenting the type is registered in the respective index and added to
the TopicMap (including a respective TopicName, which type is set to
'urn:subject:tnOccurrenceType', marking that this is the name of an
OccurrenceType).

– Parameters

∗ name -- the name of the new OccurrenceType

– Returns -- the Topic representing the OccurrenceType

• defineScope
public Scope defineScope(java.util.Set context)

– Description

define a new Scope and register it to the respective index

– Returns -- the new Scope object

• defineTopicNameType
public Topic defineTopicNameType(java.lang.String name
)

– Description

define a new TopicNameType with the given name. The Topic rep-
resenting the type is registered in the respective index and added to
the TopicMap (including a respective TopicName, which type is set
to 'urn:subject:tnTopicNameType', marking that this is the name of a
TopicNameType).

– Parameters

158 APPENDIX C. TOPIC MAP ENGINE

∗ name -- the name of the new TopicNameType

– Returns -- the Topic representing the TopicNameType

• disassociate
public void disassociate(Association a)

– Description

remove an Association from the TopicMap and ensure consistency by
removing the respective AssociationRoles from the affected Topics.

– Parameters

∗ a -- the Association to be removed

• generateTopic
public Topic generateTopic(java.lang.String name)

– Description

generates a new Topic using the given name but does not add it to the
TopicMap. A respective TopicName item is also created

– Parameters

∗ name -- the name (subject) of the Topic

– Returns -- the new Topic object

• getAssociationsParticipatedInRole
public java.util.Set getAssociationsParticipatedInRole(Topic
t, Topic roleType)

– Description

Retrieves the associations a specified topic participates in in a certain
role

– Parameters

∗ t -- the topic to be analysed

∗ roleType -- the assocation role type to be looked for

– Returns -- the associations the given topic participates in in the given
role

C.1. PACKAGE CE.TM4SCHOLION.TM 159

• getAssociationsRolesBetweenAssociationAndTopic
public java.util.Set getAssociationsRolesBetweenAssocia-
tionAndTopic(Topic t, Association a)

– Description

Retrieves the association roles that build the bridge between a speci-
fied topic and association

– Parameters

∗ t -- the topic to be analysed

∗ a -- the assoication to be analysed

– Returns -- the association roles that build the bridge between the
given topic and association

• getCounterpartTopics
public java.util.Set getCounterpartTopics(Topic given-
Topic, Topic givenRoleType, Topic searchedRoleType)

– Description

Combines getAssociationsParticipatedInRole and getTopicsInAssoc-
Role and thus retrieves all topics that are assocaited with a given one
in a specified role setting

– Parameters

∗ givenTopic -- the originating topic (to be analysed)

∗ givenRoleType -- the role type of the given topic to be looked
for

∗ searchedRoleType -- the role type of the counterpart topics to
be looked for

– Returns -- all topics that are associated with the given topic in a cer-
tain - given - role setting

• getSubtypes
public java.util.Set getSubtypes(Topic t)

– Description

160 APPENDIX C. TOPIC MAP ENGINE

Return a Set of Topics which are associated with the given Topic in a
superType-subType-Relationship either directly or indirecly (transi-
tivly via other subTypes)

– Parameters

∗ t -- the Topic to be evaluated

– Returns -- a Set of Topics which are subTypes of the given Topic

• getSupertypes
public java.util.Set getSupertypes(Topic t)

– Description

Return a Set of Topics which are associated with the given Topic in a
superType-subType-Relationship either directly or indirecly (transi-
tivly via other superTypes)

– Parameters

∗ t -- the Topic to be evaluated

– Returns -- a Set of Topics which are superTypes of the given Topic

• getTopic
public Topic getTopic(java.lang.String name)

– Description

Retrieve a Topic from the TopicMap based on its subject name

– Parameters

∗ name -- the subject name to search for

– Returns -- the fond topic, null, if no topic was found

• getTopicsInAssocRole
public java.util.Set getTopicsInAssocRole(Association
a, Topic roleType)

– Description

Retrieves the topics that take a certain role in a specified association

– Parameters

C.1. PACKAGE CE.TM4SCHOLION.TM 161

∗ a -- the assoication to be analysed

∗ roleType -- the assocation role type to be looked for

– Returns -- the topics that take the given role in the given associaiton

• markVariantSortable
public void markVariantSortable(Variant v)

– Description

mark a Variant to be 'sortable' (as defined in the TMDM)

– Parameters

∗ v -- the Variant to be marked as 'sortable'

• nameScope
public void nameScope(Scope s, java.lang.String name
)

– Description

assign a name to a Scope

– Parameters

∗ s -- the Scope to be named

∗ name -- the name to be assigned to the Scope

• reify
public void reify(Reifiable reified, Topic reifier)

– Description

reify a reifiable construct with the given Topic

– Parameters

∗ reified -- the construct to be reified

∗ reifier -- the Topic which is used as the reifier

• removeOccurrence
public void removeOccurrence(Topic t, Occurrence o)

– Description

removes an Occurrence from a Topic

162 APPENDIX C. TOPIC MAP ENGINE

– Parameters

∗ t -- the Occurrence from which the TopicName has to be removed

∗ tn -- the Occurrence to be removed

• removeTopic
public boolean removeTopic(Topic t)

– Description

removes a Topic from the TopicMap. The Topic is not removed, if it
is used to represent a type (except for topicTypes). If it represents a
topicType, all corresponding typeInstance-Associations are removed
before the Topic is deleted from the TopicMap and the topicTypes-
index.

– Parameters

∗ t -- the Topic to be removed

– Returns -- true if the Topic has been successfully removed, false oth-
erwise

• removeTopicName
public void removeTopicName(Topic t, TopicName tn)

– Description

removes a TopicName from a Topic

– Parameters

∗ t -- the Topic from which the TopicName has to be removed

∗ tn -- the TopicName to be removed

• removeVariant
public void removeVariant(TopicName tn, Variant v)

– Description

removes a Variant from a TopicName

– Parameters

∗ tn -- the TopicName from which the Variant has to be removed

∗ v -- the Variant to be removed

C.1. PACKAGE CE.TM4SCHOLION.TM 163

• setScope
public void setScope(Statement statement, Scope scope
)

– Description

set a Statement's Scope

– Parameters

∗ statement -- the Statement to be added to the scope

∗ scope -- the Sope to which the Statement has to be added

• setSuperSubType
public void setSuperSubType(Topic superType, Topic sub-
Type)

– Description

define a Supertype-Subtype-relationship in the terms of the standard

– Parameters

∗ superType -- the Topic which is the supertype

∗ subType -- the Topic which is the subtype

• setTypeInstance
public void setTypeInstance(Topic instance, Topic type
)

– Description

define a Type-Instance-relationship in the terms of the standard (and
implicitly create a TopicType). If the Topic given as 'type' is not yet
registered as a topicType, it is add to the respective index.

– Parameters

∗ instance -- the Topic which is the instance

∗ type -- the Topic to be used as the topicType

• topicIsInstanceOf
public boolean topicIsInstanceOf(Topic t, Topic type)

164 APPENDIX C. TOPIC MAP ENGINE

– Description

Checks if a Topic is an instance of a given Type. Not only evaluates
direct type-instance-relationships but also checks supertypes of the
given topic's types (necessary because of transitive characteristics of
this relationship).

– Parameters

∗ t -- the Topic to be evaluated

∗ type -- the Type to be checked for

– Returns -- true if the given Topic is an instance of the given Topic-
Type, false otherwise

• unReify
public void unReify(Reifiable reified, Topic reifier)

– Description

remove a reification

– Parameters

∗ reified -- the construct, from which the reification has to be
removed

∗ reifier -- the Topic, from which the reification has to be re-
moved

C.1.4 Class Manager.RoleTopic

Wrapper-class for management of Association-Role-Topic-Combinations in Sets

Declaration

public static class Manager.RoleTopic

extends java.lang.Object

Field summary

role
topic

C.1. PACKAGE CE.TM4SCHOLION.TM 165

Constructor summary

Manager.RoleTopic(String, Topic)

Fields

• public java.lang.String role

• public Topic topic

Constructors

• Manager.RoleTopic
public Manager.RoleTopic(java.lang.String role, Topic

topic)

C.1.5 Class Occurrence

TopicMap Engine - Occurrence Occurrences are a Topic's links to the 'outer
world' (outside the topic map). An occurrence is a representation of a relation-
ship between a subject and an information resource. Occurrences always have
an OccurrenceType (which is represented using a Topic) - every Occurrence of
the same nature references the same OccurrenceType. Every Occurrence is at-
tached to exactly one Topic.

Declaration

public class Occurrence

extends ce.tm4scholion.tm.Statement (in C.1.8, page 176)

Field summary

dataType
value

166 APPENDIX C. TOPIC MAP ENGINE

Constructor summary

Occurrence() default construtor, generates Occurrence object with
UUID as itemIdentifier

Occurrence(String) basic constructor, generates Occurrence ob-
ject with the given String as itemIdentifier

Method summary

checkTMDMCompliance()
equals(Object)
getDataType() get the dataType of the Occurrence
getParent() set the parent element of the Occurrence
getType() get the OccurrenceType of the Occurrence
getValue() get the value of the Occurrence (contains the informa-

tion ressource or the link to it, respectively)
setDataType(String) set the dataType of the Occurrence
setParent(Topic) get the parent element of the Occurrence
setType(Topic) set the OccurrenceType of the Occurrence
setValue(String) set the value of the Occurrence (contains the in-

formation ressource or the link to it, respectively)

Fields

• protected java.lang.String value

• protected java.lang.String dataType

Constructors

• Occurrence
public Occurrence()

– Description

default construtor, generates Occurrence object with UUID as itemI-
dentifier

C.1. PACKAGE CE.TM4SCHOLION.TM 167

• Occurrence
public Occurrence(java.lang.String itemIdentifier)

– Description

basic constructor, generates Occurrence object with the given String
as itemIdentifier

– Parameters

∗ itemIdentifier -- has to be unique for the whole TopicMap

Methods

• checkTMDMCompliance
public abstract java.util.Set checkTMDMCompliance()

– Description copied from TopicMapConstruct (in C.1.11, page

193)

check the compliance of this construct (including all directly attached
constructs) to the TMDM

– Returns -- a Set of all checked constructs which do not adhere the
TMDM, null is everything is compliant

• equals
public boolean equals(java.lang.Object arg0)

• getDataType
public java.lang.String getDataType()

– Description

get the dataType of the Occurrence

– Returns -- the dataType of the Occurrence

• getParent
public Topic getParent()

– Description

set the parent element of the Occurrence

168 APPENDIX C. TOPIC MAP ENGINE

– Parameters

∗ parent -- the Topic the Occurrence is bound to

• getType
public Topic getType()

– Description

get the OccurrenceType of the Occurrence

– Returns -- the Topic representing the OccurrenceType of the Occur-
rence

• getValue
public java.lang.String getValue()

– Description

get the value of the Occurrence (contains the information ressource
or the link to it, respectively)

– Returns -- the value of the Occurrence

• setDataType
protected void setDataType(java.lang.String dataType)

– Description

set the dataType of the Occurrence

– Parameters

∗ dataType -- the dataType of the Occurrence

• setParent
protected void setParent(Topic parent)

– Description

get the parent element of the Occurrence

– Returns -- the Topic the Occurrence is bound to

• setType
protected void setType(Topic type)

C.1. PACKAGE CE.TM4SCHOLION.TM 169

– Description

set the OccurrenceType of the Occurrence

– Parameters

∗ type -- the Topic representing the OccurrenceType of the Occur-
rence

• setValue
protected void setValue(java.lang.String value)

– Description

set the value of the Occurrence (contains the information ressource
or the link to it, respectively)

– Parameters

∗ value -- the value of the Occurrence

Members inherited from classce.tm4scholion.tm.Statement (in C.1.8,

page 176)
• public Scope getScope()

• protected scope

• public void setScope(Scope s)

Members inherited from classce.tm4scholion.tm.Reifiable (in C.1.6,

page 170)
• public Topic getReifier()

• public void setReifier(Topic reifier)

Members inherited from classce.tm4scholion.tm.TopicMapConstruct
(in C.1.11, page 193)

• public boolean addItemIdentifier(java.lang.String itemIdenti-

fier)

• public abstract Set checkTMDMCompliance()

• protected firstItemIdentifier

• public String getFirstItemIdentifier()

• public Set getItemIdentifiers()

• protected itemIdentifiers

170 APPENDIX C. TOPIC MAP ENGINE

• public void setFirstItemIdentifier(java.lang.String firstItemI-

dentifier)

• public void setItemIdentifiers(java.util.Set itemIdentifiers)

C.1.6 Class Reifiable

TopicMap Engine - Reifiable TopicMap constructs are constructs which can be
further specified or detailed by attaching a topic to them. With reification, it is
for example possible to add an occurrence to an association or to assign a name
to an occurrence. A more complex use case is be the assignment of associations
to a reifier to put it into relationship with other topics (or reifiers). Reifiable
constructs are all standardized constructs except Topics themselves.

Declaration

public abstract class Reifiable

extends ce.tm4scholion.tm.TopicMapConstruct (in C.1.11, page 193)

All known subclasses

Variant (in C.1.14, page 206), TopicName (in C.1.12, page 196), TopicMap (in C.1.10,

page 188), Statement (in C.1.8, page 176), Occurrence (in C.1.5, page 165), Association-

Role (in C.1.2, page 144), Association (in C.1.1, page 138)

Constructor summary

Reifiable(String) basic constructor

Method summary

getReifier() get the reifing Topic of the reifiable construct. null if
there is no reifier

setReifier(Topic) set the reifing Topic of the reifiable construct

C.1. PACKAGE CE.TM4SCHOLION.TM 171

Constructors

• Reifiable
public Reifiable(java.lang.String itemIdentifier)

– Description

basic constructor

– Parameters

∗ itemIdentifier -- has to be unique for the whole TopicMap

Methods

• getReifier
public Topic getReifier()

– Description

get the reifing Topic of the reifiable construct. null if there is no reifier

– Returns -- the reifing Topic

• setReifier
public void setReifier(Topic reifier)

– Description

set the reifing Topic of the reifiable construct

– Parameters

∗ reifier -- the Topic reifing the reifiable construct

Members inherited from classce.tm4scholion.tm.TopicMapConstruct
(in C.1.11, page 193)

• public boolean addItemIdentifier(java.lang.String itemIdenti-

fier)

• public abstract Set checkTMDMCompliance()

• protected firstItemIdentifier

• public String getFirstItemIdentifier()

• public Set getItemIdentifiers()

• protected itemIdentifiers

172 APPENDIX C. TOPIC MAP ENGINE

• public void setFirstItemIdentifier(java.lang.String firstItemI-

dentifier)

• public void setItemIdentifiers(java.util.Set itemIdentifiers)

C.1.7 Class Scope

TopicMap Engine - Scope Scopes are sets of Topics which span across a set of
subjects (context), in which certain Statements are valid. Scopes are no defined
construct of the TMDM standard but are used to describe the validity of State-
ments and have been introduced as a class for convenience. Scopes by definition
do not have a designator. For reasons of adressablity, this implementation al-
lows to define names for scopes, which are represented in a TMDM-compliant
way using a Topic of a specific type (ScopeNameTopicType).

Declaration

public class Scope

extends java.lang.Object

Constructor summary

Scope() default constructor, used to construct a new Scope

Method summary

addStatement(Statement) add a Statement to the Scope, thus
defining it to be valid within the Scope

addToContext(Topic) add a Topic to the Scope, thus defining/extending
the context in which Statements contained in this Scope are valid

equals(Object)
getContents() get the set of Statements which are valid in this Scope
getContext() get the set of Topics determining the Scope's validity

context
getId() get the ID of the Scope
getName() get the name of the Scope

C.1. PACKAGE CE.TM4SCHOLION.TM 173

getScopeNames() gets the names assigned to this Scope in a Set of
Strings

removeFromContext(Topic) remove a Topic from the Scope, thus
restricting the context in which Statements contained in this Scope
are valid

removeStatement(Statement) remove a Statement from the Scope,
thus defining it not be known to be valid anymore within the Scope

setContents(Set) set the set of Statements in this Scope
setContext(Set) set the Topics defining the Scope's validity context

as a whole
setId(String) set the ID of the Scope
setName(Topic) set the Topic containing the designator of this Scope

Constructors

• Scope
public Scope()

– Description

default constructor, used to construct a new Scope

Methods

• addStatement
protected void addStatement(Statement s)

– Description

add a Statement to the Scope, thus defining it to be valid within the
Scope

– Parameters

∗ s -- the Statement to be added

• addToContext
public void addToContext(Topic t)

– Description

174 APPENDIX C. TOPIC MAP ENGINE

add a Topic to the Scope, thus defining/extending the context in which
Statements contained in this Scope are valid

– Parameters

∗ t -- the Topic to be added

• equals
public boolean equals(java.lang.Object arg0)

• getContents
public java.util.Set getContents()

– Description

get the set of Statements which are valid in this Scope

– Returns -- the set of Statements which are valid in this Scope

• getContext
public java.util.Set getContext()

– Description

get the set of Topics determining the Scope's validity context

– Returns -- the set of Topics determining the Scope's validity context

• getId
public java.lang.String getId()

– Description

get the ID of the Scope

– Returns --

• getName
public Topic getName()

– Description

get the name of the Scope

– Returns -- the name of the Scope

• getScopeNames
public java.util.Set getScopeNames()

C.1. PACKAGE CE.TM4SCHOLION.TM 175

– Description

gets the names assigned to this Scope in a Set of Strings

– Returns -- the names assigned to this Scope

• removeFromContext
public void removeFromContext(Topic t)

– Description

remove a Topic from the Scope, thus restricting the context in which
Statements contained in this Scope are valid

– Parameters

∗ t -- the Topic to be removed

• removeStatement
protected void removeStatement(Statement s)

– Description

remove a Statement from the Scope, thus defining it not be known to
be valid anymore within the Scope

– Parameters

∗ s -- the Statement to be removed

• setContents
public void setContents(java.util.Set contents)

– Description

set the set of Statements in this Scope

– Parameters

∗ contents --

• setContext
public void setContext(java.util.Set context)

– Description

set the Topics defining the Scope's validity context as a whole

– Parameters

176 APPENDIX C. TOPIC MAP ENGINE

∗ context -- the set of Topics which determine the Scope's validi-
tiy context

• setId
public void setId(java.lang.String id)

– Description

set the ID of the Scope

– Parameters

∗ id --

• setName
protected void setName(Topic t)

– Description

set the Topic containing the designator of this Scope

– Parameters

∗ t -- the Topic containing the designator of this Scope

C.1.8 Class Statement

TopicMap Engine - Statement Statement are no defined construct of the TMDM
standard but are described as all constructs of a TopicMap which can have a
Scope in which they are valid. Following the TMDM, Statements are Assoca-
tions, AssociationRoles, Occurrences, TopicNames, TopicNames and Variants.

Declaration

public abstract class Statement

extends ce.tm4scholion.tm.Reifiable (in C.1.6, page 170)

All known subclasses

Variant (in C.1.14, page 206), TopicName (in C.1.12, page 196), Occurrence (in C.1.5,

page 165), Association (in C.1.1, page 138)

C.1. PACKAGE CE.TM4SCHOLION.TM 177

Field summary

scope

Constructor summary

Statement(String) basic constructor

Method summary

getScope() get the Scope of the Statement
setScope(Scope) set the Scope for the Statement

Fields

• protected Scope scope

Constructors

• Statement
public Statement(java.lang.String itemIdentifier)

– Description

basic constructor

– Parameters

∗ itemIdentifier -- has to be unique for the whole TopicMap

Methods

• getScope
public Scope getScope()

– Description

get the Scope of the Statement

– Returns -- the Scope of the Statement

• setScope
public void setScope(Scope s)

178 APPENDIX C. TOPIC MAP ENGINE

– Description

set the Scope for the Statement

– Parameters

∗ s -- the Scope to be set for this Statement

Members inherited from classce.tm4scholion.tm.Reifiable (in C.1.6,

page 170)
• public Topic getReifier()

• public void setReifier(Topic reifier)

Members inherited from classce.tm4scholion.tm.TopicMapConstruct
(in C.1.11, page 193)

• public boolean addItemIdentifier(java.lang.String itemIdenti-

fier)

• public abstract Set checkTMDMCompliance()

• protected firstItemIdentifier

• public String getFirstItemIdentifier()

• public Set getItemIdentifiers()

• protected itemIdentifiers

• public void setFirstItemIdentifier(java.lang.String firstItemI-

dentifier)

• public void setItemIdentifiers(java.util.Set itemIdentifiers)

C.1.9 Class Topic

TopicMap Engine - Topic Topics are the central element of each TopicMap and
represent subjects of reality. Topics have subjectIdentifiers, which are locators
(i.e. URIs) that link to resources that describe the nature of the topic. SubjectLo-
cators link to a resource which is the subject of the topic itself. A topic might have
occurrences, which are representations of a relationships between a subject and
an information resource. Topics might also have a TopicType, which describes
the type of the subject represented by teh topic. The TopicType, however, is
not stored directly within the Topic but is represented using a predefined form
of Assocaiton (TypeInstance-Association). Topics are designated using Topic-
Names, i.e. a single Topic can have several names. A Topic may take roles in

C.1. PACKAGE CE.TM4SCHOLION.TM 179

Associations to be linked to other Topics. Topics can also be used to reify other
constructs (only reifiable ones), that is to further specify and detail constructs
by the means of attaching a Topic.

Declaration

public class Topic

extends ce.tm4scholion.tm.TopicMapConstruct (in C.1.11, page 193)

Field summary

subjectIdentifiers
subjectLocators

Constructor summary

Topic() default construtor, generates Topic object with UUID as itemI-
dentifier

Topic(String) basic constructor, generates Topic object with the
given String as itemIdentifier

Method summary

addOccurrence(Occurrence) adds an Occurrence to the Topic
addRolePlayed(AssociationRole) add an AssocationRole this Topic

plays (invoked by AssociationRole to establish backlink)
addSubjectIdentifier(String) add a new subjectIdentifier to the

Topic, only performed if the subjectIdentifier is a locator in terms
of the TMDM

addSubjectLocator(String) add a new subjectLocator to the Topic,
only performed if the subjectLocator is a locator in terms of the
TMDM

addTopicName(TopicName) add a TopicName to the Topic
checkTMDMCompliance()
equals(Object)

180 APPENDIX C. TOPIC MAP ENGINE

getAssociatedAssociations() get the Associations associated by
this Topic including information on which Topic is involved via
which AssocationRole in an Association

getOccurrences() get the set of Occurrences of the Topic
getParent() get the parent element of the Topic
getReified() get the construct this Topic reifies
getRolesPlayed() get the set of roles played by this topic
getSubjectIdentifiers() get the set of subjectIdentifier of the Topic
getSubjectLocators() get the set of subjectLocators of the Topic
getTopicNames() get the set of TopicNames of this Topic
newOccurrence(String, String) generate a new Occurrence for

the Topic with the given value and datatype.
newTopicName(String) generate a new TopicName for the Topic

with the given designator.
removeOccurrence(Occurrence) remove an Occurrence from the

Topic
removeRolePlayed(AssociationRole) remove a played role from

this Topic (invoked by AssociationRole to remove backlink)
removeSubjectIdentifier(String) remove a subjectIdentifier from

the Topic
removeSubjectLocator(String) remove a subjectLocator from the

Topic
removeTopicName(TopicName) remove a TopicName from the

Topic
setOccurrences(Set) set the set of Occurrences of the Topic
setParent(TopicMap) set the parent element of the Topic
setReified(Reifiable) set the reified construct (invoked by Reifi-

able to establish backlink)
setRolesPlayed(Set) set the set of roles played by this topic
setSubjectIdentifiers(Set) set the set of subjectIdentifiers of the

Topic
setSubjectLocators(Set) set the set of subjectLocators of the Topic
setTopicNames(Set) set the set of TopicNames of this Topic

C.1. PACKAGE CE.TM4SCHOLION.TM 181

Fields

• protected java.util.Set subjectLocators

• protected java.util.Set subjectIdentifiers

Constructors

• Topic
public Topic()

– Description

default construtor, generates Topic object with UUID as itemIdenti-
fier

• Topic
public Topic(java.lang.String itemIdentifier)

– Description

basic constructor, generates Topic object with the given String as itemI-
dentifier

– Parameters

∗ itemIdentifier -- has to be unique for the whole TopicMap

Methods

• addOccurrence
public void addOccurrence(Occurrence occurrence)

– Description

adds an Occurrence to the Topic

– Parameters

∗ occurrence -- the Occurrence object to be added

• addRolePlayed
protected void addRolePlayed(AssociationRole associa-
tionRole)

182 APPENDIX C. TOPIC MAP ENGINE

– Description

add an AssocationRole this Topic plays (invoked by AssociationRole
to establish backlink)

– Parameters

∗ associationRole -- the role to be played by the topic

• addSubjectIdentifier
public boolean addSubjectIdentifier(java.lang.String sub-
jectIdentifier)

– Description

add a new subjectIdentifier to the Topic, only performed if the sub-
jectIdentifier is a locator in terms of the TMDM

– Parameters

∗ subjectIdentifier -- the subjectLocator to be added

– Returns -- true, if the subjectIdentifier was successfully added, false
otherwise

• addSubjectLocator
public boolean addSubjectLocator(java.lang.String sub-
jectLocator)

– Description

add a new subjectLocator to the Topic, only performed if the subject-
Locator is a locator in terms of the TMDM

– Parameters

∗ subjectLocator -- the subjectLocator to be added

– Returns -- true, if the subjectLocator was successfully added, false
otherwise

• addTopicName
public void addTopicName(TopicName topicName)

– Description

add a TopicName to the Topic

C.1. PACKAGE CE.TM4SCHOLION.TM 183

– Parameters

∗ topicName -- the TopicName object to be added

• checkTMDMCompliance
public abstract java.util.Set checkTMDMCompliance()

– Description copied from TopicMapConstruct (in C.1.11, page

193)

check the compliance of this construct (including all directly attached
constructs) to the TMDM

– Returns -- a Set of all checked constructs which do not adhere the
TMDM, null is everything is compliant

• equals
public boolean equals(java.lang.Object arg0)

• getAssociatedAssociations
public java.util.Map getAssociatedAssociations()

– Description

get the Associations associated by this Topic including information on
which Topic is involved via which AssocationRole in an Association

– Returns -- a Map of -Tupels, representing which Associations are
associated to the Topic via which AssocationRole

• getOccurrences
public java.util.Set getOccurrences()

– Description

get the set of Occurrences of the Topic

– Returns -- the set of Occurrences of the Topic

• getParent
public TopicMap getParent()

– Description

get the parent element of the Topic

184 APPENDIX C. TOPIC MAP ENGINE

– Returns -- the TopicMap the Topic is contained in

• getReified
public Reifiable getReified()

– Description

get the construct this Topic reifies

– Returns -- the construct which is reified by this Topic, null, if the
Topic is no reifier

• getRolesPlayed
public java.util.Set getRolesPlayed()

– Description

get the set of roles played by this topic

– Returns -- the set of roles played by this Topic

• getSubjectIdentifiers
public java.util.Set getSubjectIdentifiers()

– Description

get the set of subjectIdentifier of the Topic

– Returns -- the set of subjectIdentifier of the Topic

• getSubjectLocators
public java.util.Set getSubjectLocators()

– Description

get the set of subjectLocators of the Topic

– Returns -- the set of subjectLocators of the Topic

• getTopicNames
public java.util.Set getTopicNames()

– Description

get the set of TopicNames of this Topic

– Returns -- the set of TopicNames of this Topic

C.1. PACKAGE CE.TM4SCHOLION.TM 185

• newOccurrence
public Occurrence newOccurrence(java.lang.String value,
java.lang.String dataType)

– Description

generate a new Occurrence for the Topic with the given value and
datatype.

– Parameters

∗ value -- the value of the new Occurrence

∗ dataType -- the datatype of the new Occurrence

– Returns -- the new Occurrence object

• newTopicName
public TopicName newTopicName(java.lang.String value
)

– Description

generate a new TopicName for the Topic with the given designator.

– Parameters

∗ value -- the designator to be used for the new TopicName

– Returns -- the new TopicName object

• removeOccurrence
public void removeOccurrence(Occurrence o)

– Description

remove an Occurrence from the Topic

– Parameters

∗ o -- the Occurrence to be removed

• removeRolePlayed
protected void removeRolePlayed(AssociationRole ar)

– Description

remove a played role from this Topic (invoked by AssociationRole to
remove backlink)

186 APPENDIX C. TOPIC MAP ENGINE

– Parameters

∗ ar -- the role to be removed

• removeSubjectIdentifier
protected void removeSubjectIdentifier(java.lang.String
subjectIdentifier)

– Description

remove a subjectIdentifier from the Topic

– Parameters

∗ subjectIdentifier -- the subjectLocator to be removed

• removeSubjectLocator
public void removeSubjectLocator(java.lang.String sub-
jectLocator)

– Description

remove a subjectLocator from the Topic

– Parameters

∗ subjectLocator -- the subjectLocator to be removed

• removeTopicName
public void removeTopicName(TopicName tn)

– Description

remove a TopicName from the Topic

– Parameters

∗ tn -- the TopicName to be removed

• setOccurrences
public void setOccurrences(java.util.Set occurrences)

– Description

set the set of Occurrences of the Topic

– Parameters

C.1. PACKAGE CE.TM4SCHOLION.TM 187

∗ occurrences --

• setParent
protected void setParent(TopicMap parent)

– Description

set the parent element of the Topic

– Parameters

∗ parent -- the TopicMap the Topic is contained in

• setReified
public void setReified(Reifiable reified)

– Description

set the reified construct (invoked by Reifiable to establish backlink)

– Parameters

∗ reified -- the construct to be reified

• setRolesPlayed
public void setRolesPlayed(java.util.Set rolesPlayed)

– Description

set the set of roles played by this topic

– Parameters

∗ rolesPlayed --

• setSubjectIdentifiers
public void setSubjectIdentifiers(java.util.Set subjectI-
dentifiers)

– Description

set the set of subjectIdentifiers of the Topic

– Parameters

∗ subjectIdentifiers --

188 APPENDIX C. TOPIC MAP ENGINE

• setSubjectLocators
public void setSubjectLocators(java.util.Set subjectLo-
cators)

– Description

set the set of subjectLocators of the Topic

– Parameters

∗ subjectLocators --

• setTopicNames
public void setTopicNames(java.util.Set topicNames)

– Description

set the set of TopicNames of this Topic

– Parameters

∗ topicNames --

Members inherited from classce.tm4scholion.tm.TopicMapConstruct
(in C.1.11, page 193)

• public boolean addItemIdentifier(java.lang.String itemIdenti-

fier)

• public abstract Set checkTMDMCompliance()

• protected firstItemIdentifier

• public String getFirstItemIdentifier()

• public Set getItemIdentifiers()

• protected itemIdentifiers

• public void setFirstItemIdentifier(java.lang.String firstItemI-

dentifier)

• public void setItemIdentifiers(java.util.Set itemIdentifiers)

C.1.10 Class TopicMap

TopicMap Engine - TopicMap TopicMap is the root element of every Topic Map.
It contains references to all topics and associations which are part of the Topic
Map.

C.1. PACKAGE CE.TM4SCHOLION.TM 189

Declaration

public class TopicMap

extends ce.tm4scholion.tm.Reifiable (in C.1.6, page 170)

Constructor summary

TopicMap() default construtor, generates TopicMap object with UUID
as itemIdentifier

TopicMap(String) basic constructor, generates TopicMap object
with the given String as itemIdentifier

Method summary

addAssociation(Association) add an Association to the TopicMap
addTopic(Topic) add a Topic to this TopicMap
checkTMDMCompliance()
getAssociations() get the set of Associations of the TopicMap
getTopics() get the set of Topics of the TopicMap
newAssociation() generate a new Association in the TopicMap with

an UUID-itemIdentifier.
newTopic() generate a new Topic in the TopicMap with an UUID-

itemIdentifier.
removeAssociation(Association) remove a Association from the

TopicMap (without checking any dependencies, this is done in the
resprective Manager-routine)

removeTopic(Topic) remove a Topic from the TopicMap (with-
out checking any dependencies, this is done in the resprective
Manager-routine)

setAssociations(Set) set the Associations of the TopicMap as a
whole

setTopics(Set) set the Topics of the TopicMap as a whole

Constructors

• TopicMap
public TopicMap()

190 APPENDIX C. TOPIC MAP ENGINE

– Description

default construtor, generates TopicMap object with UUID as itemI-
dentifier

• TopicMap
public TopicMap(java.lang.String itemIdentifier)

– Description

basic constructor, generates TopicMap object with the given String as
itemIdentifier

– Parameters

∗ itemIdentifier -- has to be unique for the whole TopicMap

Methods

• addAssociation
protected void addAssociation(Association association)

– Description

add an Association to the TopicMap

– Parameters

∗ association -- the Association to be added

• addTopic
protected void addTopic(Topic topic)

– Description

add a Topic to this TopicMap

– Parameters

∗ topic -- the Topic to be added

• checkTMDMCompliance
public abstract java.util.Set checkTMDMCompliance()

C.1. PACKAGE CE.TM4SCHOLION.TM 191

– Description copied from TopicMapConstruct (in C.1.11, page

193)

check the compliance of this construct (including all directly attached
constructs) to the TMDM

– Returns -- a Set of all checked constructs which do not adhere the
TMDM, null is everything is compliant

• getAssociations
public java.util.Set getAssociations()

– Description

get the set of Associations of the TopicMap

– Returns -- the set of Associations of the TopicMap

• getTopics
public java.util.Set getTopics()

– Description

get the set of Topics of the TopicMap

– Returns -- the set of Topics of the TopicMap

• newAssociation
protected Association newAssociation()

– Description

generate a new Association in the TopicMap with an UUID-itemIdentifier.

– Returns -- the new Association object

• newTopic
protected Topic newTopic()

– Description

generate a new Topic in the TopicMap with an UUID-itemIdentifier.

– Returns -- the new Topic object

• removeAssociation
protected void removeAssociation(Association a)

192 APPENDIX C. TOPIC MAP ENGINE

– Description

remove a Association from the TopicMap (without checking any de-
pendencies, this is done in the resprective Manager-routine)

– Parameters

∗ t -- the Association to be removed

• removeTopic
protected void removeTopic(Topic t)

– Description

remove a Topic from the TopicMap (without checking any dependen-
cies, this is done in the resprective Manager-routine)

– Parameters

∗ t -- the Topic to be removed

• setAssociations
protected void setAssociations(java.util.Set associations
)

– Description

set the Associations of the TopicMap as a whole

– Parameters

∗ associations -- the Associations to be set as the contents of
the TopicMap

• setTopics
protected void setTopics(java.util.Set topics)

– Description

set the Topics of the TopicMap as a whole

– Parameters

∗ topics -- the Topics to be set as the contents of the TopicMap

Members inherited from classce.tm4scholion.tm.Reifiable (in C.1.6,

page 170)
• public Topic getReifier()
• public void setReifier(Topic reifier)

C.1. PACKAGE CE.TM4SCHOLION.TM 193

Members inherited from classce.tm4scholion.tm.TopicMapConstruct
(in C.1.11, page 193)

• public boolean addItemIdentifier(java.lang.String itemIdenti-

fier)

• public abstract Set checkTMDMCompliance()

• protected firstItemIdentifier

• public String getFirstItemIdentifier()

• public Set getItemIdentifiers()

• protected itemIdentifiers

• public void setFirstItemIdentifier(java.lang.String firstItemI-

dentifier)

• public void setItemIdentifiers(java.util.Set itemIdentifiers)

C.1.11 Class TopicMapConstruct

TopicMap Engine - TopicMapConstruct The basic element of the TMDM, from
which all standardized elements (constructs) are derived. Basically only defines
the Set of itemIdentifiers every construct has to have. ItemIdentifiers have to
be locators (i.e. URIs) and have to be unique for the TopicMap the Construct is
part of.

Declaration

public abstract class TopicMapConstruct

extends java.lang.Object

All known subclasses

Variant (in C.1.14, page 206), TopicName (in C.1.12, page 196), TopicMap (in C.1.10,

page 188), Topic (in C.1.9, page 178), Statement (in C.1.8, page 176), Reifiable (in C.1.6,

page 170), Occurrence (in C.1.5, page 165), AssociationRole (in C.1.2, page 144), Associ-

ation (in C.1.1, page 138)

Field summary

firstItemIdentifier
itemIdentifiers

194 APPENDIX C. TOPIC MAP ENGINE

Constructor summary

TopicMapConstruct(String) basic constructor, is invoked by sub-
types to generate a respective object with the given String as itemI-
dentifier.

Method summary

addItemIdentifier(String) add an itemIdentifier to a construct.
itemIdentifiers have to locators (that is, URIs) and be unique for
the TopicMap the construct is part of

checkTMDMCompliance() check the compliance of this construct
(including all directly attached constructs) to the TMDM

getFirstItemIdentifier() get the first itemIdentifier of a TopicMap-
Construct

getItemIdentifiers() get the itemIdentifiers of the construct
setFirstItemIdentifier(String) set the first itemIdentifier of a Top-

icMapConstruct
setItemIdentifiers(Set) set the itemIdentifiers of the construct

Fields

• protected java.lang.String firstItemIdentifier

• protected java.util.Set itemIdentifiers

Constructors

• TopicMapConstruct
public TopicMapConstruct(java.lang.String itemIdenti-
fier)

– Description

basic constructor, is invoked by subtypes to generate a respective ob-
ject with the given String as itemIdentifier. If the String is not an lo-
cator, an URI incorporating an UUID is used as itemIdentifier

– Parameters

∗ itemIdentifier -- has to be unique for the whole TopicMap

C.1. PACKAGE CE.TM4SCHOLION.TM 195

Methods

• addItemIdentifier
public boolean addItemIdentifier(java.lang.String itemI-
dentifier)

– Description

add an itemIdentifier to a construct. itemIdentifiers have to locators
(that is, URIs) and be unique for the TopicMap the construct is part
of

– Parameters

∗ itemIdentifier -- the string to be added as an itemIdentifier

– Returns -- true, if itemIdentifier was successfully added, false if adding
failed (because the parameter-string was no locator, i.e. an URI)

• checkTMDMCompliance
public abstract java.util.Set checkTMDMCompliance()

– Description

check the compliance of this construct (including all directly attached
constructs) to the TMDM

– Returns -- a Set of all checked constructs which do not adhere the
TMDM, null is everything is compliant

• getFirstItemIdentifier
public java.lang.String getFirstItemIdentifier()

– Description

get the first itemIdentifier of a TopicMapConstruct

– Returns -- firstItemIdentifier

• getItemIdentifiers
public java.util.Set getItemIdentifiers()

– Description

get the itemIdentifiers of the construct

196 APPENDIX C. TOPIC MAP ENGINE

– Returns -- the itemIdentifiers of the construct

• setFirstItemIdentifier
public void setFirstItemIdentifier(java.lang.String firstItemI-
dentifier)

– Description

set the first itemIdentifier of a TopicMapConstruct

– Parameters

∗ firstItemIdentifier --

• setItemIdentifiers
public void setItemIdentifiers(java.util.Set itemIdenti-
fiers)

– Description

set the itemIdentifiers of the construct

– Parameters

∗ itemIdentifiers --

C.1.12 Class TopicName

TopicMap Engine - TopicName TopicNames are constructs which determine the
natural language designator of a Topic (and are actually equal to the name(s)
of thr represented subject in most of the cases). TopicNames always have an
TopicNameType (which is represented using a Topic) - every TopicName of the
same nature references the same TopicNameType. As it is not always necessary
to define a type for a TopicName, the standard defines a defaultTopicNameType,
which has to be used in these cases.

Declaration

public class TopicName

extends ce.tm4scholion.tm.Statement (in C.1.8, page 176)

C.1. PACKAGE CE.TM4SCHOLION.TM 197

Field summary

value

Constructor summary

TopicName() default construtor, generates TopicName object with
UUID as itemIdentifier

TopicName(String) basic constructor, generates TopicName ob-
ject with the given String as itemIdentifier

Method summary

addVariant(Variant) add a Variant to the TopicName
checkTMDMCompliance()
equals(Object)
getParent() set the parent element of the TopicName
getType() get the TopicNameType of the TopicName
getValue() get the value of the TopicName (contains the name of

the Topic the TopicName is attached to)
getVariants() get the set of Variants of this TopicName
newVariant(String, String, Scope) generate a new Variant for

the TopicName with the given value and datatype in the given
Scope.

removeVariant(Variant) remove a Variant from the TopicName
setParent(Topic) get the parent element of the TopicName
setType(Topic) set the TopicNameType of the TopicName
setValue(String) set the value of the TopicName (contains the name

of the Topic the TopicName is attached to)
setVariants(Set) set the Variants of this TopicName

Fields

• protected java.lang.String value

198 APPENDIX C. TOPIC MAP ENGINE

Constructors

• TopicName
public TopicName()

– Description

default construtor, generates TopicName object with UUID as itemI-
dentifier

• TopicName
public TopicName(java.lang.String itemIdentifier)

– Description

basic constructor, generates TopicName object with the given String
as itemIdentifier

– Parameters

∗ itemIdentifier -- has to be unique for the whole TopicMap

Methods

• addVariant
public void addVariant(Variant variant)

– Description

add a Variant to the TopicName

– Parameters

∗ variant -- the Variant object to be added

• checkTMDMCompliance
public abstract java.util.Set checkTMDMCompliance()

– Description copied from TopicMapConstruct (in C.1.11, page

193)

check the compliance of this construct (including all directly attached
constructs) to the TMDM

C.1. PACKAGE CE.TM4SCHOLION.TM 199

– Returns -- a Set of all checked constructs which do not adhere the
TMDM, null is everything is compliant

• equals
public boolean equals(java.lang.Object arg0)

• getParent
public Topic getParent()

– Description

set the parent element of the TopicName

– Parameters

∗ parent -- the Topic the TopicName is bound to

• getType
public Topic getType()

– Description

get the TopicNameType of the TopicName

– Returns -- the Topic representing the TopicNameType of the Topic-
Name

• getValue
public java.lang.String getValue()

– Description

get the value of the TopicName (contains the name of the Topic the
TopicName is attached to)

– Returns -- the value of the TopicName

• getVariants
public java.util.Set getVariants()

– Description

get the set of Variants of this TopicName

– Returns -- the set of Variants of this TopicName

200 APPENDIX C. TOPIC MAP ENGINE

• newVariant
public Variant newVariant(java.lang.String value, java.lang.String

dataType, Scope s)

– Description

generate a new Variant for the TopicName with the given value and
datatype in the given Scope.

– Parameters

∗ value -- the value of the variant

∗ dataType -- the datatype of the variant's value

∗ s -- the Scope the Variant is valid in

– Returns -- the new Variant object

• removeVariant
public void removeVariant(Variant v)

– Description

remove a Variant from the TopicName

– Parameters

∗ v -- the Variant to be removed

• setParent
protected void setParent(Topic parent)

– Description

get the parent element of the TopicName

– Returns -- the Topic the TopicName is bound to

• setType
protected void setType(Topic type)

– Description

set the TopicNameType of the TopicName

– Parameters

∗ type -- the Topic representing the TopicNameType of the Topic-
Name

C.1. PACKAGE CE.TM4SCHOLION.TM 201

• setValue
public void setValue(java.lang.String value)

– Description

set the value of the TopicName (contains the name of the Topic the
TopicName is attached to)

– Returns -- the value of the TopicName

• setVariants
public void setVariants(java.util.Set variants)

– Description

set the Variants of this TopicName

– Parameters

∗ variants --

Members inherited from classce.tm4scholion.tm.Statement (in C.1.8,

page 176)
• public Scope getScope()

• protected scope

• public void setScope(Scope s)

Members inherited from classce.tm4scholion.tm.Reifiable (in C.1.6,

page 170)
• public Topic getReifier()

• public void setReifier(Topic reifier)

Members inherited from classce.tm4scholion.tm.TopicMapConstruct
(in C.1.11, page 193)

• public boolean addItemIdentifier(java.lang.String itemIdenti-

fier)

• public abstract Set checkTMDMCompliance()

• protected firstItemIdentifier

• public String getFirstItemIdentifier()

• public Set getItemIdentifiers()

202 APPENDIX C. TOPIC MAP ENGINE

• protected itemIdentifiers

• public void setFirstItemIdentifier(java.lang.String firstItemI-

dentifier)

• public void setItemIdentifiers(java.util.Set itemIdentifiers)

C.1.13 Class Utils

TopicMap Engine - Utils A collection of service routines for internal engine use
(not accessible by applications using the engine). Mainly used for type checking
and generation of unique IDs. The only items which are accessible externaly are
the fields defining the qualifiers for the default dataTypes given in the TMDM
(String, IRI, XML)

Declaration

public class Utils

extends java.lang.Object

Field summary

dtIRI the qualifier of the default dataType 'IRI'
dtString the qualifier of the default dataType 'String'
dtXML the qualifier of the default dataType 'XML'

Constructor summary

Utils()

Method summary

getUniqueItemIdentifier() generates an URI representing an unique
ID using Java's internal UUID-generation routines (available since
Java 5.0)

isDefaultDataType(String) checks if a String holds the URI of a
default datatype as defined in the TMDM standard (i.e. a String,
a IRI or XML).

C.1. PACKAGE CE.TM4SCHOLION.TM 203

isIRIDataType(String) checks if a String holds the URI of the 'IRI'
datatype as defined in the TMDM standard.

isLocator(String) checks if a String is a Locator as defined in the
TMDM standard (i.e. if the String is an URI).

isStringDataType(String) checks if a String holds the URI of the
'String' datatype as defined in the TMDM standard.

isSuperset(Set, Set) checks if a set of objects is a superset of an-
other set of objects.

isXMLDataType(String) checks if a String holds the URI of the
'XML' datatype as defined in the TMDM standard.

setsContainAtLeastOneEqualElement(Set, Set) checks if two
sets of objects contain at least one common equal element.

Fields

• public static final java.lang.String dtString

– the qualifier of the default dataType 'String'

• public static final java.lang.String dtIRI

– the qualifier of the default dataType 'IRI'

• public static final java.lang.String dtXML

– the qualifier of the default dataType 'XML'

Constructors

• Utils
public Utils()

Methods

• getUniqueItemIdentifier
protected static java.lang.String getUniqueItemIdenti-
fier()

– Description

204 APPENDIX C. TOPIC MAP ENGINE

generates an URI representing an unique ID using Java's internal UUID-
generation routines (available since Java 5.0)

– Returns -- an URI of type UUID representing an unique ID

• isDefaultDataType
protected static boolean isDefaultDataType(java.lang.String
s)

– Description

checks if a String holds the URI of a default datatype as defined in the
TMDM standard (i.e. a String, a IRI or XML).

– Parameters

∗ s -- the String to be checked

– Returns -- true if the String holds the URI of a default datatype, false
otherwise

• isIRIDataType
protected static boolean isIRIDataType(java.lang.String
s)

– Description

checks if a String holds the URI of the 'IRI' datatype as defined in the
TMDM standard.

– Parameters

∗ s -- the String to be checked

– Returns -- true if the String holds the URI of the 'IRI'-datatype, false
otherwise

• isLocator
protected static boolean isLocator(java.lang.String s
)

– Description

checks if a String is a Locator as defined in the TMDM standard (i.e. if
the String is an URI). Actually, a Locator format is not explicitly spec-
ified in TMDM but is considered to be a URI in this implementation

C.1. PACKAGE CE.TM4SCHOLION.TM 205

based on the IRI definition in 'datatypes'. Makes use of a routine of
the JENA Semantic Web Framework.

– Parameters

∗ s -- the String to be checked

– Returns -- true, if the String is an URI, false otherwise

• isStringDataType
protected static boolean isStringDataType(java.lang.String
s)

– Description

checks if a String holds the URI of the 'String' datatype as defined in
the TMDM standard.

– Parameters

∗ s -- the String to be checked

– Returns -- true if the String holds the URI of the 'String'-datatype,
false otherwise

• isSuperset
protected static boolean isSuperset(java.util.Set s1,
java.util.Set s2)

– Description

checks if a set of objects is a superset of another set of objects.

– Parameters

∗ s1 -- the assumed superset

∗ s2 -- the assumed subset

– Returns -- true, if s1 is a superset of s2

• isXMLDataType
protected static boolean isXMLDataType(java.lang.String
s)

– Description

checks if a String holds the URI of the 'XML' datatype as defined in
the TMDM standard.

206 APPENDIX C. TOPIC MAP ENGINE

– Parameters

∗ s -- the String to be checked

– Returns -- true if the String holds the URI of the 'XML'-datatype,
false otherwise

• setsContainAtLeastOneEqualElement
protected static boolean setsContainAtLeastOneEqualEle-
ment(java.util.Set s1, java.util.Set s2)

– Description

checks if two sets of objects contain at least one common equal ele-
ment.

– Parameters

∗ s1 -- the first set to be compared

∗ s2 -- the second set to be compared

– Returns -- true, if the two sets contain at least one common equal
element, false otherwise

C.1.14 Class Variant

TopicMap Engine - Variant Variants are alternative forms of a certain Topic-
Name. They can be used to define synonyms for a given topic name but also en-
able to switch the actual form of representation, as they do not necessarily have
to be strings (but can e.g. link to encoded audio). A special use case of variants is
that of a sort name, which enables sorting of topics alphabetically (correspond-
ing to unicode order). A Variant is always attached to exactly one TopicName
and is the only construct which has to have a mandatory scope definition for
standard compliance.

Declaration

public class Variant

extends ce.tm4scholion.tm.Statement (in C.1.8, page 176)

C.1. PACKAGE CE.TM4SCHOLION.TM 207

Field summary

dataType
value

Constructor summary

Variant() default construtor, generates Variant object with UUID
as itemIdentifier

Variant(String) basic constructor, generates Variant object with
the given String as itemIdentifier

Method summary

checkTMDMCompliance()
equals(Object)
getDataType() get the dataType of the Variant
getParent() get the parent element of the Variant
getValue() get the value of the Variant (contains the information

ressource representing the Variant or the link to it, respectively)
setDataType(String) set the dataType of the Variant
setParent(TopicName) set the parent element of the Variant
setValue(String) set the value of the Variant (contains the infor-

mation ressource representing the Variant or the link to it, re-
spectively)

Fields

• protected java.lang.String value

• protected java.lang.String dataType

Constructors

• Variant
public Variant()

– Description

208 APPENDIX C. TOPIC MAP ENGINE

default construtor, generates Variant object with UUID as itemIden-
tifier

• Variant
public Variant(java.lang.String itemIdentifier)

– Description

basic constructor, generates Variant object with the given String as
itemIdentifier

– Parameters

∗ itemIdentifier -- has to be unique for the whole TopicMap

Methods

• checkTMDMCompliance
public abstract java.util.Set checkTMDMCompliance()

– Description copied from TopicMapConstruct (in C.1.11, page

193)

check the compliance of this construct (including all directly attached
constructs) to the TMDM

– Returns -- a Set of all checked constructs which do not adhere the
TMDM, null is everything is compliant

• equals
public boolean equals(java.lang.Object arg0)

• getDataType
public java.lang.String getDataType()

– Description

get the dataType of the Variant

– Returns -- the dataType of the Variant

• getParent
public TopicName getParent()

C.1. PACKAGE CE.TM4SCHOLION.TM 209

– Description

get the parent element of the Variant

– Returns -- the TopicName the Variant is bound to

• getValue
public java.lang.String getValue()

– Description

get the value of the Variant (contains the information ressource rep-
resenting the Variant or the link to it, respectively)

– Returns -- the value of the Variant

• setDataType
protected void setDataType(java.lang.String dataType)

– Description

set the dataType of the Variant

– Parameters

∗ dataType -- the dataType of the Variant

• setParent
protected void setParent(TopicName parent)

– Description

set the parent element of the Variant

– Parameters

∗ parent -- the TopicName the Variant is bound to

• setValue
protected void setValue(java.lang.String value)

– Description

set the value of the Variant (contains the information ressource rep-
resenting the Variant or the link to it, respectively)

– Parameters

∗ value -- the value of the Variant

210 APPENDIX C. TOPIC MAP ENGINE

Members inherited from classce.tm4scholion.tm.Statement (in C.1.8,

page 176)
• public Scope getScope()

• protected scope

• public void setScope(Scope s)

Members inherited from classce.tm4scholion.tm.Reifiable (in C.1.6,

page 170)
• public Topic getReifier()

• public void setReifier(Topic reifier)

Members inherited from classce.tm4scholion.tm.TopicMapConstruct
(in C.1.11, page 193)

• public boolean addItemIdentifier(java.lang.String itemIdenti-

fier)

• public abstract Set checkTMDMCompliance()

• protected firstItemIdentifier

• public String getFirstItemIdentifier()

• public Set getItemIdentifiers()

• protected itemIdentifiers

• public void setFirstItemIdentifier(java.lang.String firstItemI-

dentifier)

• public void setItemIdentifiers(java.util.Set itemIdentifiers)

C.2 Package ce.tm4scholion.tm.persistency

Package Contents Page

Interfaces
TMPersistency . 211

Topic Map Engine - Persistency This interface is used to provide
generic access to different implementations for making a Topic Map
persistent.

C.2. PACKAGE CE.TM4SCHOLION.TM.PERSISTENCY 211

C.2.1 Interface TMPersistency

Topic Map Engine - Persistency This interface is used to provide generic access
to different implementations for making a Topic Map persistent.

Declaration

public interface TMPersistency

Method summary

connect(String) connect to the data source/sink, from which the
TopicMap has to retrieved or has to be stored in

retrieve() retrieve a TopicMap from the connected data source
store(TopicMap) store the given TopicMap into the connected data

sink

Methods

• connect
boolean connect(java.lang.String connection)

– Description

connect to the data source/sink, from which the TopicMap has to be
retrieved or has to be stored in

– Parameters

∗ connection -- a string adressing the data source/sink to connect
to. Concrete format is specified by implementations implement-
ing this interface.

– Returns -- true, if successfully connected, false otherwise

• retrieve
ce.tm4scholion.tm.TopicMap retrieve()

– Description

retrieve a TopicMap from the connected data source

212 APPENDIX C. TOPIC MAP ENGINE

– Returns -- the retrieved TopicMap

• store
boolean store(ce.tm4scholion.tm.TopicMap tm)

– Description

store the given TopicMap into the connected data sink

– Parameters

∗ tm -- the TopicMap to be stored

– Returns -- true, if storing was successful, false otherwise

Appendix D

OL Content Models

In this annex, the structure and usage of the Content Models is described briefly.
The figures used here have been generated using the Doxygen documentation
suite (which itself makes use of the GraphViz-toolset). Figure D.1 gives an overview
about the structure of the currently implemented content models for learning
and communication content as well as the common elements. In the following
sections, a more detailed overview about the implemented content elements will
be given (generated directly from source).

Figure D.1: Overview of currently implemented content model structure

213

214 APPENDIX D. OL CONTENT MODELS

D.1 Package ce.tm4scholion.metamodel

Package Contents Page

Classes
Element . 214

The Element class is the basic class for all content elements used in
the OL learning models.

Manager . 218
Metamodel Manager - this class provides access methods to generate
and manage meta-models of content management.

Manager.RoleElementCombination . 225
A wrapper class to represent combinations of elements and roles to
be used in associations

D.1.1 Class Element

The Element class is the basic class for all content elements used in the OL learn-
ing models. An element in minimum has a name and always may have an author
and/or an owner assigned. Every element is represented by exactly one topic in
the topic map (adressed using the myRep-field). It is however not sufficient to
simply output this topic to map the element onto the topic map. The contained
associations and attached or embedded elements also have to be considered. The
method toTopicMap covers this functionality and has to be extended for every
actual element type implemented in the meta models.

Declaration

public abstract class Element

extends java.lang.Object

All known subclasses

Subject (in D.2.3, page 230), Course (in D.2.1, page 227), LearningUnit (in D.3.2, page

235), Block (in D.3.1, page 232), EntryContainer (in D.4.2, page 239), Entry (in D.4.1,

page 238), Chatroom (in D.5.3, page 247), ChatEntry (in D.5.2, page 246), Chat (in

D.1. PACKAGE CE.TM4SCHOLION.METAMODEL 215

D.5.1, page 244), Forum (in D.6.4, page 253), DiscussionTopic (in D.6.3, page 251),

DiscussionEntry (in D.6.2, page 250), Discussion (in D.6.1, page 249), InfoboardEntry

(in D.7.2, page 255), Infoboard (in D.7.1, page 254)

Field summary

author
mgr
myRep
name
owner

Constructor summary

Element(String, Manager) Constructor to create a new element
from scratch

Element(Topic, Manager) Constructor to reconstuct the element
from an already existing topic map

Method summary

getAuthor() returns the author of this element as a Subject object
getName() returns the name of the element
getOwner() returns the owner of this element as a Subject object
getRep() return the topic used to represent this element.
setAuthor(Subject) set the author of this element
setOwner(Subject) set the owner of this element
toTopicMap() map a default element to the underlying topic map.

Fields

• protected Manager mgr

• protected java.lang.String name

• protected common.Subject author

• protected common.Subject owner

216 APPENDIX D. OL CONTENT MODELS

• protected ce.tm4scholion.tm.Topic myRep

Constructors

• Element
public Element(java.lang.String name, Manager mgr)

– Description

Constructor to create a new element from scratch

– Parameters

∗ name -- the name of the new element

∗ mgr -- the manager of the model this element is contained in

• Element
public Element(ce.tm4scholion.tm.Topic myRep, Manager

mgr)

– Description

Constructor to reconstuct the element from an already existing topic
map

– Parameters

∗ myRep -- the topic representing the element to be created

∗ mgr -- the manager of the model this element is contained in

Methods

• getAuthor
public common.Subject getAuthor()

– Description

returns the author of this element as a Subject object

– Returns -- the Subject element representing the author of this ele-
ment

• getName
public java.lang.String getName()

D.1. PACKAGE CE.TM4SCHOLION.METAMODEL 217

– Description

returns the name of the element

– Returns -- the name of the element

• getOwner
public common.Subject getOwner()

– Description

returns the owner of this element as a Subject object

– Returns -- the Subject element representing the owner of this ele-
ment

• getRep
public ce.tm4scholion.tm.Topic getRep()

– Description

return the topic used to represent this element. If the topic not yet
exists, one is created.

– Returns -- the topic representing this element

• setAuthor
public void setAuthor(common.Subject author)

– Description

set the author of this element

– Parameters

∗ author -- the Subject element representing the author

• setOwner
public void setOwner(common.Subject owner)

– Description

set the owner of this element

– Parameters

∗ owner -- the Subject element representing the owner

218 APPENDIX D. OL CONTENT MODELS

• toTopicMap
public void toTopicMap()

– Description

map a default element to the underlying topic map. This includes at-
taching author and/or owner elements, if available.

D.1.2 Class Manager

Metamodel Manager - this class provides access methods to generate and man-
age meta-models of content management.

Declaration

public class Manager

extends java.lang.Object

Constructor summary

Manager() Constructor of the meta-model manager class.

Method summary

addAssociation(String, Set, Set) add an association between de-
fined topics in specified roles and - if necessary - a certain scope

addMetamodelAssociation(String, Set) register a new associ-
ation between defined modeling elements.

addMetamodelElement(String) register a new element for a cer-
tain meta model.

addResource(Topic, String, String, Set) add resource data of a
certain type to a specified topic - if necessary, set a scope

addResourceTypesForElement(Topic, Set) register new resource
types (occurrences) for a defined modeling elements.

concretizeRole(String, Set) allows to specify subroles (or con-
crete roles) which can be inserted instead of the given top-level
role in any association type it is used in.

D.1. PACKAGE CE.TM4SCHOLION.METAMODEL 219

createNewNestedAssocType(Set, Set) shortcut to define a new
assocation type named 'nested', which is needed regularly to de-
fine hierarchical relationships

createNewNestedAssocType(Set, Set, Topic) shortcut to de-
fine a new assocation type named 'nested', which is needed regu-
larly to define hierarchical relationships.

createNewSiblingAssocType(Set) shortcut to define a new as-
socation type named 'sibling', which is needed regularly to define
ordered sets of elements

getCommonManager() retrieve the manager for common content
elements

getCommunicationManager() retrieve the manager for commu-
nication content

getLearningManager() retrieve the manager for learning content
getMetamodelElement(String) retrieve the topic representing a

certain meta element by name
getTMManager() retrieve the manager of the underlying topic map
instantiateElement(String, Topic) creates a topic representing

an actual element of a certain type
validateAssociation(String, Set) validates, wether a given set of

topic-role-combinations can be used in a certain assocation.
validateResource(Topic, String) validates, wether a given ele-

ment (represented by a topic) of a certain type can contain a re-
source of a certain type.

Constructors

• Manager
public Manager()

– Description

Constructor of the meta-model manager class. Also creates and ad-
ministrates the manager classes for the contained meta-models.

220 APPENDIX D. OL CONTENT MODELS

Methods

• addAssociation
public boolean addAssociation(java.lang.String assoc-
Type, java.util.Set rt, java.util.Set scope)

– Description

add an association between defined topics in specified roles and - if
necessary - a certain scope

– Parameters

∗ assocType -- the name of the association type to be used

∗ rt -- the set of topics to be associated in the assigned roles

∗ scope -- a set of topics defining the scope of this association

– Returns --

• addMetamodelAssociation
public void addMetamodelAssociation(java.lang.String
name, java.util.Set validRoleElementCombinations)

– Description

register a new association between defined modeling elements. Every
type of association that is used to link content of any kind has to be
registered using this method. In addition, the types of elements to be
linked and their respective roles have to be specified.

– Parameters

∗ name -- the name of the new association type

∗ validRoleElementCombinations -- a set of Role-Element-
Combinations which specify the element types that can be linked
with this association in certain roles

• addMetamodelElement
public ce.tm4scholion.tm.Topic addMetamodelElement(java.lang.String
name)

– Description

D.1. PACKAGE CE.TM4SCHOLION.METAMODEL 221

register a new element for a certain meta model. Every type of element
that is used to represent content of any kind has to be registered using
this method

– Parameters

∗ name -- the name of the new meta model element

– Returns -- the topic representing the new meta element

• addResource
public boolean addResource(ce.tm4scholion.tm.Topic el-
ement, java.lang.String data, java.lang.String type,
java.util.Set scope)

– Description

add resource data of a certain type to a specifed topic - if necessary,
set a scope

– Parameters

∗ element -- the topic representing the element to which the re-
source has to be added

∗ data -- the actual resource data (either a link, or raw or xml con-
tent

∗ type -- the type of the resource

∗ scope -- a set of topics defining the scope of this association

– Returns --

• addResourceTypesForElement
public void addResourceTypesForElement(ce.tm4scholion.tm.Topic
element, java.util.Set resourceTypes)

– Description

register new resource types (occurrences) for a defined modeling ele-
ments. Every type of resource that is used to instantiate the resprec-
tive element has to be registered using this method.

– Parameters

∗ element -- the topic representing the meta-element, to which the
resource types is added

222 APPENDIX D. OL CONTENT MODELS

∗ resourceTypes -- a set of names for the new ressource types to
be added

• concretizeRole
public void concretizeRole(java.lang.String role, java.util.Set

concreteRoles)

– Description

allows to specify subroles (or concrete roles) which can be inserted
instead of the given top-level role in any association type it is used in.
This allows to specify roles that refine a given role while assuring that
associations using this role are still verified correctly when using one
of the concrete, refined role types.

– Parameters

∗ role -- the role to be refined with concrete roles

∗ concreteRoles -- a set of names for the concrete roles

• createNewNestedAssocType
public void createNewNestedAssocType(java.util.Set su-
perordinates, java.util.Set subordinates)

– Description

shortcut to define a new assocation type named 'nested', which is needed
regularly to define hierarchical relationships

– Parameters

∗ superordinates -- the element types to be used on the upper
layer of the hierarchy

∗ subordinates -- the element types to be used on the lower layer
of the hierarchy

• createNewNestedAssocType
public void createNewNestedAssocType(java.util.Set su-
perordinates, java.util.Set subordinates, ce.tm4scholion.tm.Topic

firstSubelement)

– Description

D.1. PACKAGE CE.TM4SCHOLION.METAMODEL 223

shortcut to define a new assocation type named 'nested', which is needed
regularly to define hierarchical relationships. In this case the, subor-
dinates are an ordered set and thus have a fist element

– Parameters

∗ superordinates -- the element types to be used on the upper
layer of the hierarchy

∗ subordinates -- the element types to be used on the lower layer
of the hierarchy

∗ firstSubelement -- the element type for the first element of
the lower layer of the hierarchy

• createNewSiblingAssocType
public void createNewSiblingAssocType(java.util.Set el-
ements)

– Description

shortcut to define a new assocation type named 'sibling', which is needed
regularly to define ordered sets of elements

– Parameters

∗ elements -- the types of elements that can be used in the ordered
set of elements

• getCommonManager
public common.Manager getCommonManager()

– Description

retrieve the manager for common content elements

– Returns -- the manager for common content elements

• getCommunicationManager
public communication.Manager getCommunicationManager(
)

– Description

retrieve the manager for communication content

– Returns -- the manager for communication content

224 APPENDIX D. OL CONTENT MODELS

• getLearningManager
public learning.Manager getLearningManager()

– Description

retrieve the manager for learning content

– Returns -- the manager for learning content

• getMetamodelElement
public ce.tm4scholion.tm.Topic getMetamodelElement(java.lang.String
name)

– Description

retrieve the topic representing a certain meta element by name

– Parameters

∗ name -- the name of the meta element to retrieve

– Returns -- the topic representing the meta element, false if not found

• getTMManager
public ce.tm4scholion.tm.Manager getTMManager()

– Description

retrieve the manager of the underlying topic map

– Returns -- the manager object of the underlying topic map

• instantiateElement
public ce.tm4scholion.tm.Topic instantiateElement(java.lang.String
name, ce.tm4scholion.tm.Topic elementType)

– Description

creates a topic representing an actual element of a certain type

– Parameters

∗ name -- the name of the instantiated element

∗ elementType -- the topic representing the element type of the
new element

– Returns --

D.1. PACKAGE CE.TM4SCHOLION.METAMODEL 225

• validateAssociation
public boolean validateAssociation(java.lang.String as-
socType, java.util.Set rt)

– Description

validates, wether a given set of topic-role-combinations can be used
in a certain assocation. The validation is based on the specified asso-
ciation types

– Parameters

∗ assocType -- the association type for which the validation is car-
ried out

∗ rt -- the topic-role combination of actual elements to be validated

– Returns --

• validateResource
public boolean validateResource(ce.tm4scholion.tm.Topic
element, java.lang.String type)

– Description

validates, wether a given element (represented by a topic) of a certain
type can contain a resource of a certain type. The validation is based
on the specified resource types

– Parameters

∗ element -- the element to be validated

∗ type -- the resource type for which the validation is carried out

– Returns --

D.1.3 Class Manager.RoleElementCombination

A wrapper class to represent combinations of elements and roles to be used in
associations

Declaration

public static class Manager.RoleElementCombination

extends java.lang.Object

226 APPENDIX D. OL CONTENT MODELS

Field summary

cardinality
elements
role

Constructor summary

Manager.RoleElementCombination(String, Set, String)

Fields

• public java.lang.String role

• public java.util.Set elements

• public java.lang.String cardinality

Constructors

• Manager.RoleElementCombination
public Manager.RoleElementCombination(java.lang.String
role, java.util.Set elements, java.lang.String cardinal-
ity)

D.2 Package ce.tm4scholion.metamodel.common

Package Contents Page

Classes
Course . 227

Manager .229

Subject . 230

D.2. PACKAGE CE.TM4SCHOLION.METAMODEL.COMMON 227

D.2.1 Class Course

Declaration

public class Course

extends ce.tm4scholion.metamodel.Element (in D.1.1, page 214)

Constructor summary

Course(Topic, Manager)

Method summary

addChat(Chat)
addForum(Forum)
getContainedChats()
getContainedForums()
getContainedInfoboard()
getLUs()
setContainedChats(Set)
setContainedForums(Set)
setContainedInfoboard(Infoboard)
setLUs(Vector)
toTopicMap()

Constructors

• Course
public Course(ce.tm4scholion.tm.Topic myRep, ce.tm4scholion.metamodel.Manager

mgr)

Methods

• addChat
public void addChat(ce.tm4scholion.metamodel.communication.chat.Chat
chat)

228 APPENDIX D. OL CONTENT MODELS

• addForum
public void addForum(ce.tm4scholion.metamodel.communication.forum.Forum

forum)

• getContainedChats
public java.util.Set getContainedChats()

• getContainedForums
public java.util.Set getContainedForums()

• getContainedInfoboard
public ce.tm4scholion.metamodel.communication.infoboard.Infoboard

getContainedInfoboard()

• getLUs
public java.util.Vector getLUs()

• setContainedChats
public void setContainedChats(java.util.Set contained-
Chats)

• setContainedForums
public void setContainedForums(java.util.Set contained-
Forums)

• setContainedInfoboard
public void setContainedInfoboard(ce.tm4scholion.metamodel.communication.infoboard.Infoboard
containedInfoboard)

• setLUs
public void setLUs(java.util.Vector lus)

• toTopicMap
public void toTopicMap()

– Description copied from ce.tm4scholion.metamodel.Element
(in D.1.1, page 214)

map a default element to the underlying topic map. This includes at-
taching author and/or owner elements, if available.

D.2. PACKAGE CE.TM4SCHOLION.METAMODEL.COMMON 229

Members inherited from class ce.tm4scholion.metamodel.Element
(in D.1.1, page 214)

• protected author

• public Subject getAuthor()

• public String getName()

• public Subject getOwner()

• public Topic getRep()

• protected mgr

• protected myRep

• protected name

• protected owner

• public void setAuthor(common.Subject author)

• public void setOwner(common.Subject owner)

• public void toTopicMap()

D.2.2 Class Manager

Declaration

public class Manager

extends java.lang.Object

Field summary

course
subject

Constructor summary

Manager(Manager)

Method summary

discuss(Element, Element)
generateCourse(String)
generateSubject(String)

230 APPENDIX D. OL CONTENT MODELS

Fields

• public ce.tm4scholion.tm.Topic subject

• public ce.tm4scholion.tm.Topic course

Constructors

• Manager
public Manager(ce.tm4scholion.metamodel.Manager tm-
Manager)

Methods

• discuss
public boolean discuss(ce.tm4scholion.metamodel.Element
discussionObject, ce.tm4scholion.metamodel.Element dis-
cussedIn)

• generateCourse
public Course generateCourse(java.lang.String name)

• generateSubject
public Subject generateSubject(java.lang.String name)

D.2.3 Class Subject

Declaration

public class Subject

extends ce.tm4scholion.metamodel.Element (in D.1.1, page 214)

Constructor summary

Subject(Topic, Manager)

D.2. PACKAGE CE.TM4SCHOLION.METAMODEL.COMMON 231

Method summary

toTopicMap()

Constructors

• Subject
public Subject(ce.tm4scholion.tm.Topic myRep, ce.tm4scholion.metamodel.Manager

mgr)

Methods

• toTopicMap
public void toTopicMap()

– Description copied from ce.tm4scholion.metamodel.Element
(in D.1.1, page 214)

map a default element to the underlying topic map. This includes at-
taching author and/or owner elements, if available.

Members inherited from class ce.tm4scholion.metamodel.Element
(in D.1.1, page 214)

• protected author

• public Subject getAuthor()

• public String getName()

• public Subject getOwner()

• public Topic getRep()

• protected mgr

• protected myRep

• protected name

• protected owner

• public void setAuthor(common.Subject author)

• public void setOwner(common.Subject owner)

• public void toTopicMap()

232 APPENDIX D. OL CONTENT MODELS

D.3 Package ce.tm4scholion.metamodel.learning

Package Contents Page

Classes
Block . 232

LearningUnit . 235

Manager .236

D.3.1 Class Block

Declaration

public class Block

extends ce.tm4scholion.metamodel.Element (in D.1.1, page 214)

Constructor summary

Block(String, Manager)
Block(Topic, Manager)

Method summary

addAnnotation(LearningUnit, String, Subject, String, String)
addContent(LearningUnit, String, String)
getAnnotation(LearningUnit, String, Subject, String)
getBlocks(LearningUnit)
getContent(LearningUnit, String)
getContentTypeInLearningUnit(LearningUnit)
setContainedBlocks(Vector, LearningUnit)
setContentTypeInLearningUnit(String, LearningUnit)
toTopicMap()

D.3. PACKAGE CE.TM4SCHOLION.METAMODEL.LEARNING 233

toTopicMap(LearningUnit)

Constructors

• Block
public Block(java.lang.String name, ce.tm4scholion.metamodel.Manager

mgr)

• Block
public Block(ce.tm4scholion.tm.Topic myRep, ce.tm4scholion.metamodel.Manager

mgr)

Methods

• addAnnotation
public void addAnnotation(LearningUnit lu, java.lang.String

lod, ce.tm4scholion.metamodel.common.Subject author, java.lang.String

type, java.lang.String data)

• addContent
public void addContent(LearningUnit lu, java.lang.String

lod, java.lang.String data)

• getAnnotation
public java.lang.String getAnnotation(LearningUnit lu,
java.lang.String lod, ce.tm4scholion.metamodel.common.Subject

author, java.lang.String type)

• getBlocks
public java.util.Vector getBlocks(LearningUnit lu)

• getContent
public java.lang.String getContent(LearningUnit lu, java.lang.String

lod)

• getContentTypeInLearningUnit
public java.lang.String getContentTypeInLearningUnit(LearningU-
nit lu)

234 APPENDIX D. OL CONTENT MODELS

• setContainedBlocks
public void setContainedBlocks(java.util.Vector blocks,
LearningUnit inScope)

• setContentTypeInLearningUnit
public void setContentTypeInLearningUnit(java.lang.String
contentType, LearningUnit lu)

• toTopicMap
public void toTopicMap()

– Description copied from ce.tm4scholion.metamodel.Element
(in D.1.1, page 214)

map a default element to the underlying topic map. This includes at-
taching author and/or owner elements, if available.

• toTopicMap
public void toTopicMap(LearningUnit lu)

Members inherited from class ce.tm4scholion.metamodel.Element
(in D.1.1, page 214)

• protected author

• public Subject getAuthor()

• public String getName()

• public Subject getOwner()

• public Topic getRep()

• protected mgr

• protected myRep

• protected name

• protected owner

• public void setAuthor(common.Subject author)

• public void setOwner(common.Subject owner)

• public void toTopicMap()

D.3. PACKAGE CE.TM4SCHOLION.METAMODEL.LEARNING 235

D.3.2 Class LearningUnit

Declaration

public class LearningUnit

extends ce.tm4scholion.metamodel.Element (in D.1.1, page 214)

Constructor summary

LearningUnit(String, Manager)
LearningUnit(Topic, Manager)

Method summary

getBlocks()
setContainedBlocks(Vector)
toTopicMap()

Constructors

• LearningUnit
public LearningUnit(java.lang.String name, ce.tm4scholion.metamodel.Manager

mgr)

• LearningUnit
public LearningUnit(ce.tm4scholion.tm.Topic myRep, ce.tm4scholion.metamodel.Manager

mgr)

Methods

• getBlocks
public java.util.Vector getBlocks()

• setContainedBlocks
public void setContainedBlocks(java.util.Vector blocks
)

• toTopicMap
public void toTopicMap()

236 APPENDIX D. OL CONTENT MODELS

– Description copied from ce.tm4scholion.metamodel.Element
(in D.1.1, page 214)

map a default element to the underlying topic map. This includes at-
taching author and/or owner elements, if available.

Members inherited from class ce.tm4scholion.metamodel.Element
(in D.1.1, page 214)

• protected author

• public Subject getAuthor()

• public String getName()

• public Subject getOwner()

• public Topic getRep()

• protected mgr

• protected myRep

• protected name

• protected owner

• public void setAuthor(common.Subject author)

• public void setOwner(common.Subject owner)

• public void toTopicMap()

D.3.3 Class Manager

Declaration

public class Manager

extends java.lang.Object

Field summary

block
learningUnit

Constructor summary

Manager(Manager)

D.4. PACKAGE CE.TM4SCHOLION.METAMODEL.COMMUNICATION 237

Method summary

generateBlock(String)
generateLearningUnit(String)

Fields

• public ce.tm4scholion.tm.Topic block

• public ce.tm4scholion.tm.Topic learningUnit

Constructors

• Manager
public Manager(ce.tm4scholion.metamodel.Manager tm-
Manager)

Methods

• generateBlock
public Block generateBlock(java.lang.String name)

• generateLearningUnit
public LearningUnit generateLearningUnit(java.lang.String
name)

D.4 Package ce.tm4scholion.metamodel.communication

Package Contents Page

Classes
Entry . 238

EntryContainer . 239

Manager . 241

238 APPENDIX D. OL CONTENT MODELS

D.4.1 Class Entry

Declaration

public abstract class Entry

extends ce.tm4scholion.metamodel.Element (in D.1.1, page 214)

All known subclasses

ChatEntry (in D.5.2, page 246), DiscussionEntry (in D.6.2, page 250)

Field summary

data

Constructor summary

Entry(String, Manager)
Entry(Topic, Manager)

Method summary

setText(String)
toTopicMap()

Fields

• protected java.lang.String data

Constructors

• Entry
public Entry(java.lang.String name, ce.tm4scholion.metamodel.Manager

mgr)

• Entry
public Entry(ce.tm4scholion.tm.Topic myRep, ce.tm4scholion.metamodel.Manager

mgr)

D.4. PACKAGE CE.TM4SCHOLION.METAMODEL.COMMUNICATION 239

Methods

• setText
public void setText(java.lang.String data)

• toTopicMap
public void toTopicMap()

– Description copied from ce.tm4scholion.metamodel.Element
(in D.1.1, page 214)

map a default element to the underlying topic map. This includes at-
taching author and/or owner elements, if available.

Members inherited from class ce.tm4scholion.metamodel.Element
(in D.1.1, page 214)

• protected author

• public Subject getAuthor()

• public String getName()

• public Subject getOwner()

• public Topic getRep()

• protected mgr

• protected myRep

• protected name

• protected owner

• public void setAuthor(common.Subject author)

• public void setOwner(common.Subject owner)

• public void toTopicMap()

D.4.2 Class EntryContainer

Declaration

public abstract class EntryContainer

extends ce.tm4scholion.metamodel.Element (in D.1.1, page 214)

All known subclasses

Chatroom (in D.5.3, page 247), Discussion (in D.6.1, page 249)

240 APPENDIX D. OL CONTENT MODELS

Field summary

data
entries

Constructor summary

EntryContainer(String, Manager)
EntryContainer(Topic, Manager)

Method summary

addDescription(String)
addEntry(Entry)
getEntries()
setEntries(Vector)
toTopicMap()

Fields

• protected java.util.Vector entries

• protected java.lang.String data

Constructors

• EntryContainer
public EntryContainer(java.lang.String name, ce.tm4scholion.metamodel.Manager

mgr)

• EntryContainer
public EntryContainer(ce.tm4scholion.tm.Topic myRep,
ce.tm4scholion.metamodel.Manager mgr)

Methods

• addDescription
public void addDescription(java.lang.String data)

D.4. PACKAGE CE.TM4SCHOLION.METAMODEL.COMMUNICATION 241

• addEntry
public void addEntry(Entry entry)

• getEntries
public java.util.Vector getEntries()

• setEntries
public void setEntries(java.util.Vector entries)

• toTopicMap
public void toTopicMap()

– Description copied from ce.tm4scholion.metamodel.Element
(in D.1.1, page 214)

map a default element to the underlying topic map. This includes at-
taching author and/or owner elements, if available.

Members inherited from class ce.tm4scholion.metamodel.Element
(in D.1.1, page 214)

• protected author

• public Subject getAuthor()

• public String getName()

• public Subject getOwner()

• public Topic getRep()

• protected mgr

• protected myRep

• protected name

• protected owner

• public void setAuthor(common.Subject author)

• public void setOwner(common.Subject owner)

• public void toTopicMap()

D.4.3 Class Manager

Declaration

public class Manager

extends java.lang.Object

242 APPENDIX D. OL CONTENT MODELS

Field summary

chat
chatEntry
chatRoom
discussion
discussionEntry
discussionTopic
forum
infoboard
infoboardEntry

Constructor summary

Manager(Manager)

Method summary

generateChat(String)
generateChatEntry(String)
generateChatroom(String)
generateDiscussion(String)
generateDiscussionEntry(String)
generateDiscussionTopic(String)
generateForum(String)
generateInfoboard(String)
generateInfoboardEntry(String)

Fields

• public ce.tm4scholion.tm.Topic forum

• public ce.tm4scholion.tm.Topic discussionTopic

• public ce.tm4scholion.tm.Topic discussion

• public ce.tm4scholion.tm.Topic discussionEntry

• public ce.tm4scholion.tm.Topic chat

D.4. PACKAGE CE.TM4SCHOLION.METAMODEL.COMMUNICATION 243

• public ce.tm4scholion.tm.Topic chatRoom

• public ce.tm4scholion.tm.Topic chatEntry

• public ce.tm4scholion.tm.Topic infoboard

• public ce.tm4scholion.tm.Topic infoboardEntry

Constructors

• Manager
public Manager(ce.tm4scholion.metamodel.Manager tm-
Manager)

Methods

• generateChat
public chat.Chat generateChat(java.lang.String name)

• generateChatEntry
public Entry generateChatEntry(java.lang.String name
)

• generateChatroom
public chat.Chatroom generateChatroom(java.lang.String

name)

• generateDiscussion
public forum.Discussion generateDiscussion(java.lang.String
name)

• generateDiscussionEntry
public forum.DiscussionEntry generateDiscussionEntry(java.lang.String
name)

• generateDiscussionTopic
public forum.DiscussionTopic generateDiscussionTopic(java.lang.String
name)

244 APPENDIX D. OL CONTENT MODELS

• generateForum
public forum.Forum generateForum(java.lang.String name
)

• generateInfoboard
public infoboard.Infoboard generateInfoboard(java.lang.String
name)

• generateInfoboardEntry
public infoboard.InfoboardEntry generateInfoboardEntry(
java.lang.String name)

D.5 Package ce.tm4scholion.metamodel.communication.chat

Package Contents Page

Classes
Chat .244

ChatEntry . 246

Chatroom . 247

D.5.1 Class Chat

Declaration

public class Chat

extends ce.tm4scholion.metamodel.Element (in D.1.1, page 214)

Constructor summary

Chat(String, Manager)
Chat(Topic, Manager)

D.5. PACKAGE CE.TM4SCHOLION.METAMODEL.COMMUNICATION.CHAT245

Method summary

addChatRoom(Chatroom)
getChatRooms()
setChatRooms(Set)
toTopicMap()

Constructors

• Chat
public Chat(java.lang.String name, ce.tm4scholion.metamodel.Manager

mgr)

• Chat
public Chat(ce.tm4scholion.tm.Topic myRep, ce.tm4scholion.metamodel.Manager

mgr)

Methods

• addChatRoom
public void addChatRoom(Chatroom chatRoom)

• getChatRooms
public java.util.Set getChatRooms()

• setChatRooms
public void setChatRooms(java.util.Set chatRooms)

• toTopicMap
public void toTopicMap()

– Description copied from ce.tm4scholion.metamodel.Element
(in D.1.1, page 214)

map a default element to the underlying topic map. This includes at-
taching author and/or owner elements, if available.

246 APPENDIX D. OL CONTENT MODELS

Members inherited from class ce.tm4scholion.metamodel.Element
(in D.1.1, page 214)

• protected author

• public Subject getAuthor()

• public String getName()

• public Subject getOwner()

• public Topic getRep()

• protected mgr

• protected myRep

• protected name

• protected owner

• public void setAuthor(common.Subject author)

• public void setOwner(common.Subject owner)

• public void toTopicMap()

D.5.2 Class ChatEntry

Declaration

public class ChatEntry

extends ce.tm4scholion.metamodel.communication.Entry (in D.4.1, page 238)

Constructor summary

ChatEntry(Topic, Manager)

Constructors

• ChatEntry
public ChatEntry(ce.tm4scholion.tm.Topic myRep, ce.tm4scholion.metamodel.Manager

mgr)

Members inherited from classce.tm4scholion.metamodel.communication.Entry
(in D.4.1, page 238)

• protected data

• public void setText(java.lang.String data)

• public void toTopicMap()

D.5. PACKAGE CE.TM4SCHOLION.METAMODEL.COMMUNICATION.CHAT247

Members inherited from class ce.tm4scholion.metamodel.Element
(in D.1.1, page 214)

• protected author

• public Subject getAuthor()

• public String getName()

• public Subject getOwner()

• public Topic getRep()

• protected mgr

• protected myRep

• protected name

• protected owner

• public void setAuthor(common.Subject author)

• public void setOwner(common.Subject owner)

• public void toTopicMap()

D.5.3 Class Chatroom

Declaration

public class Chatroom

extends ce.tm4scholion.metamodel.communication.EntryContainer (in D.4.2, page

239)

Constructor summary

Chatroom(Topic, Manager)

Method summary

toTopicMap()

Constructors

• Chatroom
public Chatroom(ce.tm4scholion.tm.Topic myRep, ce.tm4scholion.metamodel.Manager

mgr)

248 APPENDIX D. OL CONTENT MODELS

Methods

• toTopicMap
public void toTopicMap()

– Description copied from ce.tm4scholion.metamodel.Element
(in D.1.1, page 214)

map a default element to the underlying topic map. This includes at-
taching author and/or owner elements, if available.

Members inherited from classce.tm4scholion.metamodel.communication.EntryContainer
(in D.4.2, page 239)

• public void addDescription(java.lang.String data)

• public void addEntry(Entry entry)

• protected data

• protected entries

• public Vector getEntries()

• public void setEntries(java.util.Vector entries)

• public void toTopicMap()

Members inherited from class ce.tm4scholion.metamodel.Element
(in D.1.1, page 214)

• protected author

• public Subject getAuthor()

• public String getName()

• public Subject getOwner()

• public Topic getRep()

• protected mgr

• protected myRep

• protected name

• protected owner

• public void setAuthor(common.Subject author)

• public void setOwner(common.Subject owner)

• public void toTopicMap()

D.6. PACKAGE CE.TM4SCHOLION.METAMODEL.COMMUNICATION.FORUM249

D.6 Package ce.tm4scholion.metamodel.communication.forum

Package Contents Page

Classes
Discussion . 249

DiscussionEntry .250

DiscussionTopic . 251

Forum . 253

D.6.1 Class Discussion

Declaration

public class Discussion

extends ce.tm4scholion.metamodel.communication.EntryContainer (in D.4.2, page

239)

Constructor summary

Discussion(Topic, Manager)

Constructors

• Discussion
public Discussion(ce.tm4scholion.tm.Topic myRep, ce.tm4scholion.metamodel.Manager

mgr)

Members inherited from classce.tm4scholion.metamodel.communication.EntryContainer
(in D.4.2, page 239)

• public void addDescription(java.lang.String data)

250 APPENDIX D. OL CONTENT MODELS

• public void addEntry(Entry entry)

• protected data

• protected entries

• public Vector getEntries()

• public void setEntries(java.util.Vector entries)

• public void toTopicMap()

Members inherited from class ce.tm4scholion.metamodel.Element
(in D.1.1, page 214)

• protected author

• public Subject getAuthor()

• public String getName()

• public Subject getOwner()

• public Topic getRep()

• protected mgr

• protected myRep

• protected name

• protected owner

• public void setAuthor(common.Subject author)

• public void setOwner(common.Subject owner)

• public void toTopicMap()

D.6.2 Class DiscussionEntry

Declaration

public class DiscussionEntry

extends ce.tm4scholion.metamodel.communication.Entry (in D.4.1, page 238)

Constructor summary

DiscussionEntry(Topic, Manager)

D.6. PACKAGE CE.TM4SCHOLION.METAMODEL.COMMUNICATION.FORUM251

Constructors

• DiscussionEntry
public DiscussionEntry(ce.tm4scholion.tm.Topic myRep,
ce.tm4scholion.metamodel.Manager mgr)

Members inherited from classce.tm4scholion.metamodel.communication.Entry
(in D.4.1, page 238)

• protected data

• public void setText(java.lang.String data)

• public void toTopicMap()

Members inherited from class ce.tm4scholion.metamodel.Element
(in D.1.1, page 214)

• protected author

• public Subject getAuthor()

• public String getName()

• public Subject getOwner()

• public Topic getRep()

• protected mgr

• protected myRep

• protected name

• protected owner

• public void setAuthor(common.Subject author)

• public void setOwner(common.Subject owner)

• public void toTopicMap()

D.6.3 Class DiscussionTopic

Declaration

public class DiscussionTopic

extends ce.tm4scholion.metamodel.Element (in D.1.1, page 214)

Constructor summary

DiscussionTopic(Topic, Manager)

252 APPENDIX D. OL CONTENT MODELS

Method summary

addDiscussion(Discussion)
toTopicMap()

Constructors

• DiscussionTopic
public DiscussionTopic(ce.tm4scholion.tm.Topic myRep,
ce.tm4scholion.metamodel.Manager mgr)

Methods

• addDiscussion
public void addDiscussion(Discussion d)

• toTopicMap
public void toTopicMap()

– Description copied from ce.tm4scholion.metamodel.Element
(in D.1.1, page 214)

map a default element to the underlying topic map. This includes at-
taching author and/or owner elements, if available.

Members inherited from class ce.tm4scholion.metamodel.Element
(in D.1.1, page 214)

• protected author

• public Subject getAuthor()

• public String getName()

• public Subject getOwner()

• public Topic getRep()

• protected mgr

• protected myRep

• protected name

• protected owner

• public void setAuthor(common.Subject author)

• public void setOwner(common.Subject owner)

• public void toTopicMap()

D.6. PACKAGE CE.TM4SCHOLION.METAMODEL.COMMUNICATION.FORUM253

D.6.4 Class Forum

Declaration

public class Forum

extends ce.tm4scholion.metamodel.Element (in D.1.1, page 214)

Constructor summary

Forum(Topic, Manager)

Method summary

addDiscussionTopic(DiscussionTopic)
toTopicMap()

Constructors

• Forum
public Forum(ce.tm4scholion.tm.Topic myRep, ce.tm4scholion.metamodel.Manager

mgr)

Methods

• addDiscussionTopic
public void addDiscussionTopic(DiscussionTopic dt)

• toTopicMap
public void toTopicMap()

– Description copied from ce.tm4scholion.metamodel.Element
(in D.1.1, page 214)

map a default element to the underlying topic map. This includes at-
taching author and/or owner elements, if available.

Members inherited from class ce.tm4scholion.metamodel.Element
(in D.1.1, page 214)

• protected author

254 APPENDIX D. OL CONTENT MODELS

• public Subject getAuthor()

• public String getName()

• public Subject getOwner()

• public Topic getRep()

• protected mgr

• protected myRep

• protected name

• protected owner

• public void setAuthor(common.Subject author)

• public void setOwner(common.Subject owner)

• public void toTopicMap()

D.7 Package ce.tm4scholion.metamodel.communication.infoboard

Package Contents Page

Classes
Infoboard . 254

InfoboardEntry . 255

D.7.1 Class Infoboard

Declaration

public class Infoboard

extends ce.tm4scholion.metamodel.Element (in D.1.1, page 214)

Constructor summary

Infoboard(Topic, Manager)

D.7. PACKAGE CE.TM4SCHOLION.METAMODEL.COMMUNICATION.INFOBOARD255

Constructors

• Infoboard
public Infoboard(ce.tm4scholion.tm.Topic myRep, ce.tm4scholion.metamodel.Manager

mgr)

Members inherited from class ce.tm4scholion.metamodel.Element
(in D.1.1, page 214)

• protected author

• public Subject getAuthor()

• public String getName()

• public Subject getOwner()

• public Topic getRep()

• protected mgr

• protected myRep

• protected name

• protected owner

• public void setAuthor(common.Subject author)

• public void setOwner(common.Subject owner)

• public void toTopicMap()

D.7.2 Class InfoboardEntry

Declaration

public class InfoboardEntry

extends ce.tm4scholion.metamodel.Element (in D.1.1, page 214)

Constructor summary

InfoboardEntry(Topic, Manager)

Constructors

• InfoboardEntry
public InfoboardEntry(ce.tm4scholion.tm.Topic myRep,
ce.tm4scholion.metamodel.Manager mgr)

256 APPENDIX D. OL CONTENT MODELS

Members inherited from class ce.tm4scholion.metamodel.Element
(in D.1.1, page 214)

• protected author

• public Subject getAuthor()

• public String getName()

• public Subject getOwner()

• public Topic getRep()

• protected mgr

• protected myRep

• protected name

• protected owner

• public void setAuthor(common.Subject author)

• public void setOwner(common.Subject owner)

• public void toTopicMap()

	Introduction
	Motivation
	Specification of Subgoals
	Structure of this Work
	Part 1 - Requirements Gathering
	Part 2 - Refinement \046 Representation
	Part 3 - System Design \046 Implementation
	Part 4 - Evaluation

	I Requirements Gathering
	Requirements from Organisational Learning
	Relevant Content Types
	Requirements on Data Representation

	Experiences from eLearning
	Decomposition of Content
	Collaborative Learning through Communication
	Learning Support using Process Models
	Requirements on Data Representation

	II Refinement \046 Representation
	Structured Refinement of Content Types
	Process
	Check against other Reference Models
	Summary

	Content
	Communication
	Meta-Data
	Inter-model Aspects
	Extensibility

	Data Representation Concepts
	Topic Maps
	RDF \046 OWL
	RDF \046 OWL Overview
	Towards integration with Topic Maps

	III System Design \046 Implementation
	Overview
	Technical Constraints for Scholion-Integration

	Topic Map Engine
	Persistency

	Representation of OL Content
	Mapping Content Models to Topic Maps
	OL Management Layer
	Scholion Data Importer

	IV Evaluation
	Content Structure Visualization
	Evaluation Design
	Formal Tests
	User Evaluation

	Evaluation \046 Results
	Formal tests
	User evaluation

	Conclusions
	On the Use of Topic Maps
	On relevant Schools of Knowledge Management
	On Directions for further Development

	References
	Appendix
	Approaches to Organisational Learning
	Concepts focusing on the Learning Process
	March \046 Olsen
	Argyris \046 Schön
	Huber
	SECI-Model (Nonaka, Takeuchi \046 Krogh)
	The Fifth Discipline (Senge)
	Kim
	Stoiber
	ENRICH (Mulholland et al.)
	Theory U (Scharmer, Senge, Jaworski \046 Flowers)
	Knowledge Lifecycle (Firestone \046 McElroy)
	Value Networks (Allee)

	Concepts focusing on Objects of Learning
	Stein
	Abecker \046 van Elst
	Eulgem
	Linger \046 Burstein
	Ramesh
	Le, Lamontagne \046 Nguyen
	Wargitsch \046 Wewers

	ISO Topic Map Details
	Topics
	Topic Names \046 Variants

	Associations
	Association Roles

	Occurrences
	Further Building Blocks
	Scope
	Meta-Elements - Types
	Reification
	Merging
	Subject Identifiers \046 Locators

	Topic Map Engine
	Package ce.tm4scholion.tm
	Class Association
	Class AssociationRole
	Class Manager
	Class Manager.RoleTopic
	Class Occurrence
	Class Reifiable
	Class Scope
	Class Statement
	Class Topic
	Class TopicMap
	Class TopicMapConstruct
	Class TopicName
	Class Utils
	Class Variant

	Package ce.tm4scholion.tm.persistency
	Interface TMPersistency

	OL Content Models
	Package ce.tm4scholion.metamodel
	Class Element
	Class Manager
	Class Manager.RoleElementCombination

	Package ce.tm4scholion.metamodel.common
	Class Course
	Class Manager
	Class Subject

	Package ce.tm4scholion.metamodel.learning
	Class Block
	Class LearningUnit
	Class Manager

	Package ce.tm4scholion.metamodel.communication
	Class Entry
	Class EntryContainer
	Class Manager

	Package ce.tm4scholion.metamodel.communication.chat
	Class Chat
	Class ChatEntry
	Class Chatroom

	Package ce.tm4scholion.metamodel.communication.forum
	Class Discussion
	Class DiscussionEntry
	Class DiscussionTopic
	Class Forum

	Package ce.tm4scholion.metamodel.communication.infoboard
	Class Infoboard
	Class InfoboardEntry

